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Abstract

Let G C GL3(C) be the group of type %(1, a,r—a) with a coprime to r. For such G,
the quotient variety X = C3/G is not Gorenstein and has a terminal singularity. The
singular variety X has the economic resolution which is “close to being crepant”. In
this paper, we prove that the economic resolution of the quotient variety X = C3/G
is isomorphic to the birational component of a moduli space of #-stable McKay
quiver representations for a suitable GIT parameter #. Moreover, we conjecture the
moduli space of 6-stable McKay quiver representations is irreducible, and prove this

for a = 2 and in a number of special examples.



Chapter 1

Introduction

The motivation of this work stems from the philosophy of the McKay correspondence,
which says that if a finite group G acts on a variety M, then the crepant resolutions
of the quotient variety M /G have information of the G-equivariant geometry of
M [29].

Let G be a finite subgroup of GL,(C). A G-equivariant coherent sheaf F
on C™ is called a G-constellation if its global sections H°(F) are isomorphic to the
regular representation C[G] of G as a G-module. In particular, the structure sheaf of
a G-invariant subscheme Z C C" with H(Oy) isomorphic to C[G] as a G-module,
which is called a G-cluster, is a G-constellation. It is known that G-clusters are
f-stable G-constellations for a particular choice of GIT stability parameter 6 [13].

For a finite group G C SLg(C), Ito and Nakamura [14] introduced G-Hilb C?
which is the fine moduli space parametrising G-clusters and proved that G-Hilb C?
is the minimal resolution of C2/G. In the celebrated paper [1], Bridgeland, King and
Reid proved that for a finite subgroup of SL3(C), G-Hilb C? is a crepant resolution of
the quotient variety C3/G. Also Craw and Ishii [2] showed that in the case of a finite
abelian group G C SL3(C), any projective crepant resolution can be realised as the
fine moduli space of #-stable G-constellations for a suitable stability parameter 6.

For a finite abelian group G C GL,(C) and a generic GIT parameter 6 € ©,
Craw, Maclagan and Thomas [4] showed that the moduli space My of #-stable
G-constellations has a unique irreducible component Yy which contains the torus
T := (C*)"/G. So the irreducible component is birational to the quotient variety
C™/G. The component Yy is called the birational componenﬂ of My.

On the other hand, it is shown [23,28] that a 3-fold cyclic quotient singu-
larity X = C3/G has terminal singularities if and only if G is of type %(1, a,r —a)

!This component is also called the coherent component.



with a coprime to r. In this case, X have a preferred toric resolution, called the
economic resolution. For the group G of type %(1, a,r—a), G-Hilb C? is smooth and
isomorphic to the economic resolution of X if and only if @ = 1 or » — 1 as shown
in [17]. Kedzierski [16] proved that there exists a Weyl chamber € in © such that
the normalization of the birational component Yy of the moduli space of #-stable
G-constellations is isomorphic to the economic resolution Y of X = C3/G. To show
this, he found a suitable family over the economic resolution Y and a chamber € such
that G-constellations in the family are #-stable for # € €. His original description
of stability parameters is a set of inequalities, but one can show that his stability
parameters form an open Weyl chamber and this is easy to describe using the A, 1

root system.

Main results

Let G C GL3(C) be the finite subgroup of type %(l,a,r — a) with a coprime to r,
i.e. G is the subgroup generated by the diagonal matrix diag(e, €%, €" =) where € is
a primitive rth root of unity. The quotient variety X = C3/G is not Gorenstein
and has terminal singularities. Moreover, the singular variety X = C3/G has no
crepant resolution. However, there exist economic resolutions which are close to
being crepant (see Section 5.7 in [28]). The economic resolution can be obtained by
a toric method, which is called weighted blowups.

In this paper, we prove that the economic resolution Y is isomorphic to an
irreducible component of the moduli space of G-equivariant sheaves on C3. More

precisely, we have the following theorem.

Theorem 1.0.1 (Corollary 4.3.2). Let G C GL3(C) be the finite subgroup of type
1(1,a,7 — a) with a coprime to r. The economic resolution Y of X = C3/G is
isomorphic to the birational component Yy of the moduli space My of 0-stable G-

constellations for a suitable parameter 6.

To prove this, we introduce generalized G-graphs and round down functions.
A generalized G-graph T" is a generalized version of Nakamura G-graph in [25]. A
G-graph corresponds to a torus invariant G-constellation. We define a toric affine
open set U(T") associated to a G-graph I" and a family of G-constellations over U (T").
These give us a local chart of the moduli space of #-stable McKay quiver represen-
tations for suitable parameter . On the other hand, the round down functions are
related to weighted blowups. For each step of the weighted blowups, we define three

round down functions, that are maps between monomial lattices. The round down



functions are used for finding admissible G-graphs, which define the universal family
over the economic resolution Y.

Moreover, we prove that our stability parameters form an open Weyl cham-
ber, which coincides with the chamber in |[16]. With Section we can see that

the chamber is a full chamber in the GIT stability parameter space.

Layout of this thesis

In Chapter 2, we define (generalized) G-graphs and we review standard results on
moduli spaces of G-constellations. Using certain G-graphs, we describe the bi-
rational component of the moduli space of f-stable G-constellations. Chapter
explains how to obtain the economic resolutions using toric methods and defining
round down functions. The round down functions will play a big role in finding
admissible G-graphs. Chapter [] contains our main theorem. In Section we
explain the way to find a set of admissible G-graphs in a recursive way using round
down functions. In Section[d.2] we prove that the admissible G-graphs in Section [4.1]
are f-stable for parameters 6 in a suitable chamber. Moreover, we prove that the
GIT parameters form an open Weyl chamber. In Section [4.3] we state the main
theorem and conjectures. Chapter 5| contains further results. Section [5.1] presents a
description of f-stable torus invariant A-constellations for A of type %(1, r—1)ifé
is in an open Weyl chamber of A,_;. Section investigates the chamber structure
of GIT stability parameters. Section [5.3| proves that the moduli space of 8-stable

McKay quiver representations is irreducible if a = 2.



Chapter 2
G-graphs and G-constellations

This section introduces a (generalized) G-graph which is a generalized version of
Nakamura G-graphs in [25]. As Nakamura G-graphs are associated with torus in-
variant G-clusters, our G-graphs are associated with torus invariant G-constellations.
If a G-graph I satisfies a certain condition, then we call the G-graph a G-iraffe. For
each G-iraffe I', we define a toric affine open set U(I") and a family over the open
set U(T).

In this section, we restrict ourselves to the case where a group G is a finite
cyclic group in GL3(C). It is possible to generalize part of the argument to include
general small abelian groups in GL,,(C) for any dimension n. However, we prefer to

focus on this case where we can avoid the difficulty of notation.

2.1 Moduli of quiver representations

In this section, we briefly review the construction of moduli spaces of quiver repre-
sentations introduced in [18].
2.1.1 Quivers and their representations

A quiver () is a directed graph with a set of vertices I = Qg and a set of arrows Q1.

For an arrow a € Q1, let h(a) (resp. t(a)) denote the head (resp. tail) of the arrow a:
t(a) % h(a).

One can define the path algebra of a quiver Q to be the C-algebra whose basis is
nontrivial paths in ) and trivial paths corresponding to the vertices of Q and whose

multiplication is given by the concatenation of two paths.



A representation of a quiver @) is a collection of C-vector spaces V; for each
vertex i € I and linear maps V; — V; for each arrow from i to j. For a representation
V, the I-tuple (dimc V;)ier € ZL, is called the dimension vector of V denoted by
dim (V). A representation (U, 57) of a quiver @ is called a subrepresentation of a
representation (V&) if U is an I-graded subspace of V' such that {,(Uy,)) C Up(q)
for all @ € Q1 and &' is the restriction of £ to U.

It is well known that the abelian category of representations of a quiver @) is
equivalent to the category of finitely generated left modules of the path algebra of
Q.

Let us fix a dimension vector v = (v;);e;. Let Rep(Q,v) denote the repre-

sentation space of () with dimension vector v:

Rep(vi) = @ Hom(‘/t(a)u Vh(a)) = @ H0m<(cviacvj)7

ac@Qq aii—j

which is an affine space. Note that the reductive group GL(v) := [[..; GL,, acts

el
on Rep(Q,v) as basis change.

One can see that
Rep(Q, V) — Rep(Q, V) / GL(v) := Spec C[Rep(Q, v)] )

is a categorical quotient and that Rep(Q,v) / GL(v) is an affine variety.

Remark 2.1.1. Geometric points of Rep(Q, v) / GL(v) correspond to GL(v)-orbits

of semisimple representations of () whose dimension is v. ¢

2.1.2 Background: Geometric Invariant Theory

In this section, we present results from standard Geometric Invariant Theory (GIT),
cf. [22].

Definition 2.1.2. Let G be a reductive group acting on an affine variety X. A

surjective morphism ¢: X — Y is a good quotient if:
(i) % is constant on G-orbits.

(ii) the natural map Oy (U) — 1.Ox (U) induces Oy (U) = (¢.Ox)%(U) for any
openset U CY.

(iii) (W) is closed in Y for any G-invariant closed set W C X.

(iv) Y(W1) Ny(Wa) = O for two disjoint G-invariant closed sets Wy, Wa of X.



Moreover, if Y is an orbit space, then ¢: X — Y is called a geometric quotient.

Consider an affine algebraic variety X with a reductive group G acting on it.

Given a character y: G — C*, f € C[X] is called a x semi-invariant function if

flg-x)=x(9)f(z) z€X, VgeQq.

Let C[X],» denote the C-vector space of all x" semi-invariant functions. One defines

the semistable locus as
X*(x) :={x € X|3n>1, f € C[X]y» such that f(z)# 0}
and the stable locus as
X°(x) :=={z € X**(x)| G- is closed in X**(x), the stabiliser G, is finite} .

The quasiprojective variety

X/, G = Proj (P C[X]\»)

n>0

is called a GIT quotient corresponding to x. In particular, if the character x = 0,
i.e. 0 is trivial, then C[X]y» = C[X]% for all n so we have

X /, G = SpecC[X ]
which is an affine variety. Thus we have a canonical projective morphism
X/, G— Spec C[X]“.

Remark 2.1.3. Let G be a reductive group acting on an affine variety X. Fix a

character x of G. For each positive integer d, define the dth Veronese subalgebra of

®nzoc[X]x" to be
P Clx] .

n>0
One can show that the inclusion of the subalgebra induces an isomorphism of alge-

braic varieties

X //X G—> X //Xd dG.
Thus any positive multiple of a character y gives the same GIT quotient as y. ¢

As is well known by GIT [22|, the quasiprojective variety X // G s a cate-
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gorical quotient X*%(x) by G.

Theorem 2.1.4 (Geometric Invariant Theory [22]). Let G be a reductive group

acting on an affine variety X and x a character of G. Then:
(i) m: X**(x) = X [, G is a good quotient of X**(x) by G.

(ii) there exists an open subset Y ofX//XG such that'Y is a geometric quotient
of X°(x) by G, i.e. an orbit space.

(iii) the GIT quotient X //x G is projective over the affine variety Spec C[X]C.

Remark 2.1.5. Assume that X°(x) = X*(x). Let 7: X /| G — X*(x)/G be the
GIT quotient. Then 7 is a geometric quotient. Let U be a G-invariant affine open
set in X*%(x). Then

mly: U — w(U)

is a good quotient and 7(U) = Spec C[U]® is an open set of X*(x)/G. ¢

The following theorem is helpful to understand the local behaviour of the
GIT quotients.

Theorem 2.1.6 (Luna’s Etale Slice Theorem [12,121]). Let G be a reductive group
acting on an affine variety X. Assume that m: X — X J/ G is a good quotient. Let
x € X be a point with closed G-orbit G - x. Then there exists a G -invariant locally
closed affine subset V' of X containing x such that the G-action on X induces an
étale G-equivariant morphism ¢: G xg, V. — X. Moreover, v induces an étale
morphism V' | G, — X || G, and the following diagram

GXGxV — X

| |

V)G, — X/G

is Cartesian.

2.1.3 Moduli spaces of quiver representations

This section explains a notion of stability on quiver representations introduced by
King [18]. His main result is that the notion of stability on quiver representations
and the notion of GIT stability are equivalent and that we can construct a fine

moduli space of quiver representations in a certain case.



An element § € Q! can be thought as a group homomorphism from the

Grothendieck group of representations of @ to Q defined by
O(V):=> fidimgV;=6-v
il
where V is a representation of () with dimension vector v.

Definition 2.1.7. Let V be a v-dimensional representation of a quiver ). For a

parameter § € Q! satisfying 6 - v = 0, we say that:
(i) V is @-semistable if (W) > 0 for any subrepresentation W of V.
(ii) V is @-stable if 6(W) > 0 for any nonzero proper subrepresentation W of V.
(iii) 0 is generic if every f-semistable representation is f-stable.

The parameter § € Q! plays the same role as x does in Section The
character yy defined by

xo(g) = [ [ det(g)"
el
for g = (g;) € GL(v) vanishes on the diagonal matrices C* € GL(v) if and only if
0-v=0.
King 18] shows that a representation V' € Rep(Q, v) is #-semistable (resp. 6-
stable) if and only if the corresponding point V' € Rep(Q, v) is xp-semistable (resp.
Xo-stable). Moreover:

Theorem 2.1.8 (King [18]). Let v be a dimension vector. Assume a parameter
0 € Q' satisfies §-v =0.

(i) The quasiprojective variety
My(Q,v) :=Proj [ @D C[Rep(Q, v)]\z
n>0

is a coarse moduli space of 0-semistable v-dimensional representations of @

up to S-equivalence.

(ii) If 0 is generic, Mg(Q,v) is a fine moduli space of 0-stable v-dimensional

representations of Q.

(iii) The variety Mg(Q,V) is projective over Spec C[Rep(Q, v)]SH¥),



Remark 2.1.9. By Luna’s Etale Slice Theorem, if 8 is generic, then the quotient
map

m: Rep®(Q,v) = My(Q, V)

is a principal GL(v)/C*-bundle. ¢

2.2 McKay quiver and G-constellations

Let G € GL3(C) be the finite group of type %(al, ag,as). Let p; be the irreducible
representation of G whose weight is ¢. Since G is abelian, every irreducible repre-
sentation is one-dimensional and the number of irreducible representation is equal
to the order of G. We can identify I := Irr(G) with Z/rZ. Note that the inclusion
G C GL3(C) induces a natural representation of G on C3, which can be decomposed

as

Par D Pas D Pas-

2.2.1 McKay quiver representations

Definition 2.2.1. (McKay quiver) The McKay quiver of G is the quiver whose
vertex set is the set I of irreducible representations of G and the number of arrows

from p; to p; is the dimension of Homeg(p;, (pa; @ Pas @ Pas) @ pi)-

Since G has r irreducible representations, the McKay quiver of G has r

vertices po, ..., pr—1. For two irreducible G-representations p; and p;,
3
Home (pj, (Pay ® pas @ pas) @ pi)) = Home(pj, @kzl Pay, @ Pi)

3
= P Home(p;, pivay);
k=1

and by Schur’s lemma

) 1 ifj=i+ar modr,
dim HOHIG(pj, Pi+ak) =
0 otherwise.

Thus the McKay quiver has 3r arrows. Let z;,v;, z; denote the arrow from p; to

Pitons Pitas, Pitas, respectively. We are interested in the McKay quiver with the



following commutation relations:

TilYitar — Yilitaz;
LiZi+a1 — Rilitas) (222)

YiZitos — Zilitas-

Definition 2.2.3. A McKay quiver representation is a representation of the McKay
quiver of dimension (1,...,1) with the relations (2.2.2)), i.e. it is a collection of one-
dimensional C-vector spaces V; for each p; € GV, and a collection of linear maps

from V; to Vj; assigned to each arrow from p; to p; which satisfy the commutation
relations ([2.2.2]).

Example 2.2.4. Let G C GL3(C) be the finite group of type 1—12(1, 5,7),1ie.r=12
and a = 5. The set of irreducible representations of G is {p; ‘ 0 < i <11} and the
induced representation is isomorphic to p1 @ ps ® p7. The McKay quiver of G has
12 vertices and 36 arrows.

After fixing basis on vector spaces attached to vertices, the McKay quiver
representations are in 1-to-1 correspondence with points of the closed subscheme of

the affine space

(337“ = SpeC(C[fL'O, sy Tr—15Y05 - - -y Yr—1,205 - - - 727“—1]
defined by the commutation relations ([2.2.2)). ¢

Let Rep G denote the McKay quiver representation space of G. Note that

its coordinate ring is
C[RepG]=C [xi,yi,zz- {z € I] /IG

where I is the ideal generated by the quadrics in (2.2.2)).

Let § = (1,...,1) € ZL,. The reductive group GL() := [[,.;C* = (C*)"
acts on Rep G by basis changeT Note that GL()-orbits are in 1-to-1 correspondence
with isomorphism classes of the McKay quiver representations.

Consider the algebraic torus T = (C*)3 acting on Rep G by

(t1,t2,t3) - (w4, 4i, 21) = (trxs, tays, 132;).

One can see that T-action commutes with GL(d)-action. This action naturally comes

from the notion of G-constellations, which are a certain kind of coherent sheaves on

C? (see Remark [2.2.15)).

10



We define the GIT parameter space © to be
©:={0cQ"|0-5=0}.

By Theorem we know that:
(i) the quasiprojective scheme
My = Proj @C[Rep Glxn
n>0

is a coarse moduli space of #-semistable McKay quiver representations up to

S-equivalence.

(ii) if 6 is generic, My is a fine moduli space of #-stable McKay quiver represen-
tations of Q).

(iii) My is projective over Spec C[Rep G]GL(‘S).

Remark 2.2.5. The affine scheme Spec C[Rep G]GL@ contains the quotient variety
C3/G as a closed subvariety (see Remark [A.0.2)). ¢

2.2.2 (-constellations

Definition 2.2.6. A G-constellation on C? is a G-equivariant Clx,y, z]-module F

on C3, which is isomorphic to the regular representation C[G] of G’ as a G-module.

Remark 2.2.7. Any G-constellation F is isomorphic to @@, Cp; as a vector space. ¢

The representation ring R(G) of G is €D

parameter space

pEGY Zp. Define the GIT stability

© = {6 € Homz(R(G),Q) | 6 (C[G]) = 0}
= {6 = (6" e Q" ‘ Yicrft = 0}.
Definition 2.2.8. For a stability parameter § € O, we say that:

(i) a G-constellation F is 0-semistable if 6(G) > 0 for any nonzero proper sub-
module G C F.

(ii) a G-constellation F is @-stable if §(G) > 0 for any nonzero proper submodule
GCF.

11



(iii) 0 is generic if every #-semistable object is #-stable.

Remark 2.2.9. It is known that the language of G-constellations is the same as the
language of the McKay quiver representations. Thus we can construct the moduli

spaces of G-constellations by Geometric Invariant Theory as in Section [2.1 ¢

Let My denote the moduli space of #-stable G-constellations. Ito and Naka-
jima [13] showed that G-Hilb C? is isomorphic to My if @ is in the following set:

©1 :={0€0O|0(p) >0 for nontrivial p # po} . (2.2.10)

Let Z be a G-orbit in the algebraic torus T := (C*)3 € C3. Then H(Oy) is
isomorphic to C[G], thus it is a G-constellation. Moreover, since Z is a free G-orbit,
Oz has no nonzero proper submodules. Hence it follows that Oy is 6-stable for any

parameter §. Thus for any parameter 6, there exists a natural embedding of the
torus T := (C*)3/G into My.

Remark 2.2.11. The existence of the natural embedding of the torus 7" := (C*)3/G
into My can be proved by Luna’s Etale Slice Theorem as is standard in the theory

of moduli spaces of sheaves (e.g. see [12]). ¢

Lemma 2.2.12. Let Z be a free G-orbit in C3. Then Oy is a G-constellation
supported on the free G-orbit Z. Conversely, if a G-constellation F is supported on
a free G-orbit Z C C3, then F is isomorphic to Oy as a G-constellation.

Proof. For the first statement, one can refer to [24].

To prove the second statement, let F be a G-constellation whose support is
a free G-orbit Z.

Then F has no nonzero proper submodules. Indeed, for a nonzero submodule
G of F, the support of G is a G-invariant nonempty subset of the free G-orbit Z. As
Z is a free G-orbit, the support of G is Z. Since F, is 1-dimensional for any = € Z,
it follows that G, = F, and hence G = F.

Consider v¢: Clz,y, z] — F defined by f — f ey where eq is a basis of Cpy.
As F has no nonzero proper submodules, 1 is surjective. Since the support of F is
Z, it follows that Iz is in the kernel of 1. Thus we have

Oy =Clzx,y,z]/Iz > Clz,y, 2|/ ker(¢v)) = F.

From the fact that both Oz and F are G-constellations, it follows that Oz = F as
dimc Oz = dim¢ F. ]

12



Craw, Maclagan and Thomas [4] proved the following theorem.

Theorem 2.2.13 (Craw, Maclagan and Thomas [4]). Let 0 € © be generic. Then
My has a unique irreducible component Yy which contains the torus T := (C*)"/G.

Moreover Yy satisfies the following properties:

(i) Yy is a not-necessarily-normal toric variety which is birational to the quotient
variety C3/G.

(ii) Yy is projective over the quotient variety C?/G.

Yo Mo

L

C3/G—= My

closed

Remark 2.2.14. We call the unique irreducible component Yy of My the birational
component. For generic § € ©, Craw, Maclagan and Thomas [4] constructed the
birational component Yy as GIT quotient of a reduced irreducible affine scheme by

an algebraic torus. From this, it follows that Yy is irreducible and reduced. ¢

Remark 2.2.15. Since the algebraic torus T acts on C3, T acts on the moduli
space My naturally. Fixed points of the T-action play a crucial role in the study
of the moduli space My. Note that this T-action is the same as the T-action in
Section [2.2.1 ¢

2.3 Abelian group actions and toric geometry

Let G C GL3(C) be the finite subgroup of type %(al, a9, a3), i.e. G is the subgroup
generated by the diagonal matrix diag(e®!, €2, €e*3) where € is a primitive rth root

of unity. The group G acts naturally on S := C|z,y, z]. Define the lattice
3 1
L=7"4+7-—(a1,a2,as)
r

which is an overlattice of L = Z3 of finite index. Let {e1, e, e3} be the standard
basis of Z3. Set M = Homgz(L,Z) and M = Homgz(L,Z). The dual lattices M
and M can be identified with Laurent monomials and G-invariant Laurent mono-
mials, respectively. The embedding of G into the torus (C*)? ¢ GL3(C) induces a
surjective homomorphism

wt: M — GV

13



where GV := Hom(G,C*) is the character group of G. Note that M is the kernel of
the map wt.

Remark 2.3.1. There are two isomorphisms of abelian groups L/Z3 — G and
M/M — GV. ¢

Let M>( denote genuine monomials in M, i.e.
MZO = {xmlym22m3 eM ’ mi, Mo, M3 > 0} .

For a set A C C[z*,y*, 2%], let (A) denote the C[z,y, z]-submodule of C[zF, y*, 2F]
generated by A.
Let o4 be the cone in Lr := L ®z R generated by eq, e9, €3, i.e.

o4 = Cone(ey, eg, €3).
For the cone o and the lattice L, we define a corresponding affine toric variety
U, = SpecCloy N M].

Note that U,, is the quotient variety X = C3/G = SpecClz, y, 2]% as M is the

G-invariant Laurent monomials.

Remark 2.3.2. As is usual in toric geometry, the affine toric variety of the cone
o, with the lattice L is

C? = SpecClz, y, 2] = Spec C[s N M].
The quotient map C3 — X is induced by the inclusion L C L. ¢
Let O be the unit cube in Ly = L ® R = R3, i.e.
O:= {(u1,uQ,U3) eR3 ‘ 0<uy; < 1}.
Since L=7Z3+7- %(al, ag, as), one can see that [J contains r — 1 lattice points

V; = %(ial, ’iOéQ, ia3)

for 1 <14 < r where ~ denotes the residue modulo r. In the case of type %(1, a,r—a),
these lattice points lie on the plane y + z = 1 and they are all the nonzero lattice

points in [] except eq, es, €3.

14



2.4 Generalized G-graphs

Definition 2.4.1. A (generalized) G-graph T is a subset of Laurent monomials in

Clz™T, y*, 2T satisfying:
(i) 1eT.

(ii) wt: ' — GV is bijective, i.e. for each weight p € GV, there exists a unique

Laurent monomial m, € I' whose weight is p.
(iii) f m-n-m, €T form, € T and m,n € Mo, then n-m, € T

(iv) T is connected in the sense that for any element m,, there is a (fractional)
path from m, to 1 whose steps consist of multiplying or dividing by one of

x,y,zin T

For any Laurent monomial m € M, let wtp(m) denote the unique element

m, in I' whose weight is wt(m).

Remark 2.4.2. Nakamura G-graphs I' in |25 are G-graphs in this sense because if
a monomial m-n is in I' for two monomials m,n € Mzoa then m is in I'. The main
difference between Nakamura’s definition and ours is that we allow elements to be

Laurent monomials, not just genuine monomials. ¢

Example 2.4.3. Let G be the group of type %(l, 3,4). Then
_ 2,z 22 22
Fl — {Lyay 2 Y’ y7y2}7
y3}
22
z

are G-graphs. In I'1, wtp, (z) = § and wtr, (y°) = %. ¢

FQ = {1727,%3/2; ?J;? y?d

<
)

As is defined in [25], for a generalized G-graph I' = {m,}, define S(I") to
be the subsemigroup of M generated by m M for all m € M, m, € I'.

wtr(m - m,)
Define a cone o(T') in Lg = R3 as follows:

<um'mp>zo vmper,meMzo}.

Observe that:
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(i) o(I) C oy,

(ii) (HZO N M) c S(),

(ifi) S(T) C (a(r)v N M).
Define two affine toric open sets:

U(T) := Spec C[S(T')],
U(T) := Spec C[o¥ (') N M].

Note that U”(I") is the normalization of U(I") and that the torus Spec C[M] of U(T")
is isomorphic to (C*)3/G.

Craw, Maclagan and Thomas [5] showed that there exists a torus invariant G-
cluster which does not lie over the birational component Yy. The following definition
is implicit in [5].

Definition 2.4.4. A generalized G-graph T is called a G-iraffe if the open set U(T")

has a torus fixed point.

Remark 2.4.5. As is standard in toric geometry, note that U(T") has a torus fixed
point if and only if S(I')N(S(I'))~! = {1}. The open set U(T") does not need to have
a torus fixed point. In other words, the cone o(I") is not necessarily a 3-dimensional

cone. For counterexamples, see Appendix ¢

Example 2.4.6. For the G-graphs in Example [2.4.3]

O‘(Fl):{UER?) (u,m) >0, foradlmé{£ 2 Ty },

ZQ’yT7 P

— Cone ((1,0,0)7 1(3,2,5), %(1,3,4)), and

o(ly) = {u € R? [(u,m) >0, for all m € {Z—j, Z—:, ’;—f}},

— Cone ((1, 0,0), 1(1,3,4), (6,4, 3)).

In both cases, they are G-iraffes. One can see that S(I'1) = o('1)¥ N M and
S(Ty) = o (2)V N M. ¢

Lemma 2.4.7. Let I be a G-graph. Define

B(T) := {f -m,|m, €T, fe {m,y,z}}\f‘.
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Then the semigroup S(I') is generated as a semigroup by ﬁ(b) for all b € B(T).

In particular, S(T') is finitely generated as a semigroup.

Proof. Let S be the subsemigroup of M generated by ﬁ(b) for all b € B(T') as a
semigroup. Clearly, S C S(I'). For the inverse inclusion, it is enough to show that
the generators of S(I') are in S.

An arbitrary generator of S(I') is of the form % for some m € M >,
m, € I We may assume that m-m, ¢ I'. In particular, m # 1. Since m has
positive degree, there exists f € {x,y, 2} such that f divides m, i.e. 7 € MZO and

deg(F) < deg(m). Let m, denote wtr(*f - m,). Note that

th(f . mp/) = Wtr(f . . mp) = Wtr(m . mp).

f
Thus
m-m, _ %-mp f-th(%~mp)
wtr(m-m,) wtr(f -m,) wtpr(m-m,)
__Fm f-m,
Wtr(% mp) Wtr(f mp/)
By induction on the degree of monomial m, the assertion is proved. O

2.5 (G-graphs and local charts

Let I' be a G-graph. Define

then it can be seen that C(I') is a torus invariant G-constellation. Note that C(I")
can be realised as follows: C(I") is the C-vector space with a basis I' whose G-action

is induced by the G-action on C[z,y, z] and whose C[z,y, z]-action is given by

m-m, ifm-m,cT,

m*m, =
0 ifm-m, ¢T,

for a monomial m € M and m, €I
Any submodule G of C(I') is determined by a subset A C I', which forms a

C-basis of G. We give a combinatorial description of submodules of C(I").

Lemma 2.5.1. Let A be a subset of I'. The following are equivalent.
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(i) The set A forms a C-basis of a submodule of C(T).
(it) If m, € A and f € {x,y,z}, then f-m, € T implies f - m, € A.
Example 2.5.2. From Example recall the G-graph

2 2

F = {]‘7y7y27’z7 i? %? %}7

<

where G is of type %(1, 3,4). For the element y + y? + 2 in C(T),

z
Y
yx W+’ +2) =y +0+ 2=y +2eC).

Let G be the submodule of C(I') generated by a basis e; of Cp;. Then one can see

that the set A = {z, %, %} satisfies the condition (ii) in the lemma above. Indeed,

A is a C-basis of G. ¢
Let p be a point in U(T"). Then there exists the evaluation map
evp: S(I') = (C, x),

which is a semigroup homomorphism.
To assign a G-constellation C(I'),, to the point p of U(I"), firstly consider the
C-vector space with basis I' whose G-action is induced by the G-action on C|x, y, z].

Endow it with the following C[z, y, z]-action,

My )) wtr(m - my,), (2.5.3)

m * m, := ev, (vvtp(mmp
for a monomial m € MZO and an element m, in I'.
Lemma 2.5.4. With the notation as above, we have the following:
(1) C(I')p is a G-constellation for any p € U(T').
(i1) For any p, I' is a C-basis of C(I'),.
(111) C(I'), 2 C(I')g, if p and q are different points in U(T').

(iv) Let Z C T = (C*)3 be a free G-orbit and p the corresponding point in the
torus Spec C[M] of U(I"). Then C(I'), = Oz as G-constellations.

(v) If T is a G-iraffe and p is the torus fized point of U(I"), then C(I"), = C(I).

18



Proof. From the definition of C(I"),, The assertions (i), (ii) and (v) follow imme-
diately. The assertion (iii) follows from the fact [3] that points on the affine toric
variety U(I") are in 1-to-1 correspondence with semigroup homomorphisms from
S(T) to C.

It remains to show (iv). Let Z C T = (C*)? be a free G-orbit and p the
corresponding point in Spec C[M] C U(T"). Define a G-equivariant C[z, y, z]-module

homomorphism
Clz,y,z] = C(I'),, given by f— f 1.

One can check the morphism is surjective and whose kernel is equal to the ideal of
Z. This proves (iv). O

This is a family of McKay quiver representations in the following sense of [18§].

Definition 2.5.5. A family of representations of a quiver Q with relations over
a scheme B is a representation of () with relations in the category of locally free

sheaves over B.

Definition 2.5.6. A G-graph is said to be -stable if the G-constellation C(I") is
f-stable.

Proposition 2.5.7. Let I" be a G-iraffe, that is, U(T") has a torus fized point. Let Yy
be the birational component in My. For a generic 0, assume that C(I") is 0-stable.

Then C(T'), is 0-stable for any p € U(T"). Thus there exists an open immersion
U(T') = SpecC[S(T")] —— Yy C M.

Proof. Let us assume that the G-constellation C'(I") is f-stable. Let p be an arbitrary
point in U(I') and G a submodule of C(I'),. By the definition of C(I'), it is clear
that G is a submodule of C(I'). Since C(I") is #-stable, 8(G) > 0, and thus C(I'),, is
f-stable.

Now we introduce deformation theory of the G-constellation in My. Deform-

ing C(T') involves 3r parameters {z,,y,, 2, | pe€GY}

r*xm, =z, wtr(z-m)),

y*m, =y, wtr(y -m,),

zxm, = 2z, wtr(z - m,),
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such that the following quadrics vanish:

LpYwt(z-m,) — YpLwt(y-m,)>
LpZwt(z-my) — “pTwt(zmy)> (2.5.8)

Yp2wt(y-m,) — ZpYwt(y-m,)-

Since I' is a C-basis, for f € {z,y, 2}, f, = 1 if wtp(f - m,) = f-m,. Define a subset

of the 3r parameters
AD) == {f, | wtr(f - m,) =f-m,, £, € {z,,yp,2,}}
Define an affine scheme D(I") whose coordinate ring is

Clzp,yp2p|p € GY] [Ir

where It = < the quadrics in 1) f—1 ‘ fe A(F)>.

By King’s GIT [1§], the affine scheme D(T') is an open set of My which
contains the point corresponding to C'(I"). More precisely, for a 6-stable G-graph T,
we have an affine open set 51: in the McKay quiver representation space Rep G, which
is defined by f, to be nonzero for all f, € A(I'). Note that Ur is GL(9)-invariant
and that any point in [ff; is f-stable. Since the quotient map Rep®’ G — My is a
geometric quotient, by GIT (see Remark , it follows that

Ur /) GL(6) = Spec C[U]CL0)

is an open set in My. On the other hand, after changing basis, we can set f, € A(T")
to be 1 for all f, € A(I'). One can see that this gives a slicﬂ so that D(T") is
isomorphic to Spec C[C%]GL(‘S).

Note that there is a C-algebra epimorphism from C[D(T")] to C[S(T")] defined
by
f-m,

T
e wtp(f - myp)’

for £, € {,,yp,2,}. It follows that U(I") is a closed subscheme of D(T").

As Craw, Maclagan, and Thomas [4] proved that the birational component

2First, see that C[Ur] = Rep G[A(I')"']. Note that GL(8)-invariants in C[Ur] are generated by
cycles with inverting the arrows in A(T'). Assume that a is the linear map corresponding to an
arrow from p to p’. For p, p’, there exists an undirected path p, in A(T)NA(I) ™" from p to p’, that
is unique up to the commutation relations. This means that ap, ' is GL(d)-invariants. From this,
one can show that there exists an algebra isomorphism between C[D(I')] to C[Ur]%™®) defined by
ar apg L

20



Y} is a unique irreducible component of My containing torus I" which is isomorphic
o (C*)3/@ as an algebraic group, Yy N D(I') is a unique irreducible component of
D(T") which contains the torus T'. Note that Yy D(T) is reduced by Remark [2.2.14]
We now prove that the morphism U(T') — D(I') C My induces an isomor-
phism from the torus Spec C[M] onto the torus T' of Y. In other words, U(T") con-
tains the torus 7" of Yy. Let 1) denote the restriction of the morphism to Spec C[M].
First note that 7" represents G-constellations whose support is in T = (C*)3. Let p
be a point in the torus Spec C[M] C U(I") with the corresponding free G-orbit Z. By
Lemma the G-constellation C(I'), over p is isomorphic to Oz. Thus ¢ maps
Spec C[M] into T. On the other hand, Lemma [2.2.12|shows that any G-constellation
whose support is a free G-orbit Z in T is isomorphic to Oz. From this, it follows
that 1) is a bijective morphism between the two tori. As ) is a group homomorphism
by the construction of C'(I"),, ¢ is an isomorphism between Spec C[M] and T'.
Remember that U(I") is reduced and irreducible as it is defined by an affine
semigroup algebra C[S(T")]. Note that U(I") is in the component Yy N D(I") because
U(T) is a closed subset of D(I") containing 7. Since both are of the same dimension,
U(T) is equal to Yp N D(T"). Thus there exists an open immersion from U(T") to
Y. 0

2.6 G-iraffes and torus fixed points in Yj

In this section, we present a 1-to-1 correspondence between the set of torus fixed
points in Yy and the set of #-stable G-iraffes.

For a genuine monomial m € Mzo, let m(,) denote the path induced by m
in the McKay quiver from the vertex p. In other words, m(, is the linear map
induced by the action of the monomial m on the vector space Cp.

An undirected path in the McKay quiver is a path in the underlying graph
of the McKay quiver. For a G-constellation F, an undirected path in the McKay
quiver is said to be defined if the linear maps corresponding to the opposite-directed

arrows in the path are nonzero in F.

Definition 2.6.1. A defined undirected path in the McKay quiver is of type m for a
Laurent monomial m € M where m is the Laurent monomial obtained by forgetting

outgoing vertices.

Example 2.6.2. Let G be the group of type %(1, 3,4). Consider the G-graph

2 2

L={lyy"2%%, 5}
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The torus invariant G-constellation C'(I') has the following configurations:

Y 22 Y 22
P2 ——=pP5 =z
Y
P1—> P4 po Y
y

Yy Yy
po —— P3 ——> P6

where the marked arrows are nonzero and the others are all zero. The path from 1
to y? is induced by y? at pg, whose type is 2. The undirected path from ps to p4
is a defined undirected path of type % because the path consists of nonzero linear
maps:

Yy z Yy
P2 P5 £1 P4-

However, the following undirected path of the same type % from po to py

Yy Yy z
P2 P5 p1 P4

is not defined because the third arrow is zero in C(I"). ¢

Remark 2.6.3. Let p be a nonzero path induced by a genuine monomial m € M>q
from p;. If q is a path induced by a genuine monomial n € M>q from p; with the

condition that n divides m, then the path q is nonzero. ¢

Lemma 2.6.4. Let F be a torus invariant G-constellation. Then there are no

defined (undirected) cycles of type m with m # 1.

Proof. For a contradiction, suppose that there is a defined cycle of type m # 1.
Then m is a G-invariant Laurent monomial.

We may assume that the cycle is a cycle around pg of type m = "1 y"22™M3.
A point (t1,t2,t3) € T = (C*)3 acts on the cycle by a scalar multiplication of
t1"™ty2t3™3, Since m # 1, there exists t € T such that t;™,™2¢3™3 £ 1, i.e.

t*(F) is not isomorphic to F. Therefore F is not torus invariant. O

In Section we proved that if I is a f-stable G-iraffe, then C'(T") is a torus
invariant G-constellation over Yy and the corresponding point is fixed by its algebraic
torus. Clearly, two different G-iraffes I, I give non-isomorphic G-constellations
C(T), C(I"). Moreover, we now prove that for any torus fixed point p € Yp, the

corresponding G-constellation is isomorphic to C(I") for some G-iraffe T'.
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Let p be a torus fixed point in Yy. There exists a one parameter subgroup
A C*—TCY,

with lim;_,0 A%(¢) = p. Since Yy is the fine moduli space of #-stable G-constellations,
we have a family U of 6-stable G-constellations over Aé with the following property:
for nonzero s € A(%: and the point ¢ := A“(s), the G-constellation U, over s is
isomorphic to Oz where Z is the free G-orbit in T corresponding to the point ¢. In
particular, the support of the G-constellation U is in the torus T = (C*)3 c C3.
Let F be the #-stable G-constellation over 0 € Al. Let us define a subset I’

of Laurent monomials to be
I'= {m € M‘ 3 a defined nonzero undirected path in F of type m from po}.

Firstly, we prove that I' is a G-graph. Clearly, I" contains 1. Since 6 is generic and
F is f-stable, there exists a nonzero undirected defined path from pg to p so there is
a Laurent monomial m,, in I" for each p € GV. The Laurent monomial m, is unique:
suppose there exists a defined path of type n, from pg to p, and then there exists a
defined cycle of type r:—: at po, which implies n, = m, by Lemma It remains
to show the condition (c) of Definition We need the following lemma:

Lemma 2.6.5. With the notation as above, let p and q be two defined (undirected)
paths of the same type m from p to p' for some Laurent monomial m € M. Then,
m F,

p*xe,=qxe,

where e, is a basis of Cp.

Proof. Firstly, note that if m is a genuine monomial, then the assertion follows from
the C[z,y, z]-module structure.

Let m be a Laurent monomial. There exists a genuine monomial n € M
so that n - m is a genuine monomial with n nonzero on A\*(C*). Since two paths

p * e, and q * e, are of type m - n, we have
N(y) %P *ep = N(y) % *ep. (2.6.6)

Since (2.6.6) implies p * ep = q * e, in the G-constellation U, for nonzero s € Al
the assertion is proved by flatness of the family U. O
To show that I' satisfies the condition (c) of Definition [2.4.1] suppose that

m-n-m, € I' form, € I" and m,n € M>p. We need to show that n-m, c .
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By the definition of I', there exist nonzero (undirected) paths p of type m-n-m,
and q of type m,. By Lemma it follows that the defined undirected path
m ) * N, % q is nonzero as it is of the same type as bp. This implies that the

defined undirected path n(, * q is nonzero. Thusn-m, € I'.

Proposition 2.6.7. Let G C GL3(C) be the finite cyclic group of type %(al, g, a3).
For a generic parameter 0, there is a 1-to-1 correspondence between the set of torus

fized points in the birational component Yy and the set of 0-stable G-iraffes.

Proof. From the argument above, we have shown that there exists a G-graph I" for
each torus fixed point p. Using Lemma m one can easily show that C(T") is
actually isomorphic to F as a G-constellation. In particular, C(I") lies over p € Yy,
and hence U(T") contains the torus fixed point p. Thus I' is a G-iraffe.

Let I' be a f-stable G-iraffe. By Proposition 2.5.7 and Lemma [2.5.4] we can
see that C(I") lies over Yy for a G-graph T' if ' is a G-iraffe. Thus we have a torus

fixed point p representing the isomorphism class of C(I"). O

Corollary 2.6.8. Let " be a G-graph. Then C(T') lies over the birational component
Yy if and only if I' is a G-iraffe.

Theorem 2.6.9. Let G C GL3(C) be a finite diagonal group and 0 a generic GIT

parameter for G-constellations. Assume that & is the set of all 8-stable G-iraffes.

(i) The birational component Yy of My is isomorphic to the not-necessarily-normal
toric variety Jpeg U(T).

(i) The normalization of Yy is isomorphic to the normal toric variety whose toric

fan consists of the full dimensional cones o(I') for ' € & and their faces.

Proof. Let G C GL3(C) be the finite subgroup of type %(al, ag, asz). Consider the
lattice 1
L=73 + 7 - f(al,ag,ag).
r

Let Yy be the birational component of the moduli space of #-stable G-
constellations and Yy” the normalization of Yy. Let Y denote the not-necessarily-
normal toric variety | Jpeg U(I'). Define the fan X in Lg whose full dimensional cones
are o(I") for T' € &. One can see that the corresponding toric variety Y := Xy is
the normalization of Y.

Since Yy’ is a normal toric variety, it is covered by toric affine open sets U;
with the torus fixed point p; in U;. Let g; be the image of p; under the normalization.
As each ¢; is a torus fixed point, it follows from Proposition that there is a
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(unique) G-iraffe I'; € & with C(I';) isomorphic to the G-constellation represented
by ¢;.

By Proposition [2.5.7] for each G-iraffe I" € &, there is an open immersion of
U(T) into Yy. Thus we have an open immersion ¢: Y — Ypy and the image ¥ (Y)
contains all torus fixed points of Yj.

The induced morphism ¥”: Y” — Y, is an open embedding. Note that the
numbers of full dimensional cones are the same. Thus 9" should be an isomorphism.
This proves (ii).

To show (i), suppose that Yp \ ¢(Y") is nonempty so it contains a torus orbit
O of dimension d > 1. Since the normalization morphism is torus equivariant and
surjective, there exists a torus orbit O" in Y =Y of dimension d which is mapped
to the torus orbit O. At the same time, from the fact that Y” is the normalization
of Y and that the normalization morphism is finite, it follows that the image of O’
is a torus orbit of dimension d, so the image is O. Thus O is in ¥(Y'), which is a

contradiction. O

Corollary 2.6.10. With notation as Theorem[2.6.9, Yy is a normal toric variety if
and only if S(T) = o(T)V N M for allT € &.

Remark 2.6.11 (Link to [4]). In general, it is hard to find the set of all #-stable
G-iraffes in practice.

Craw, Maclagan, and Thomas [4] described Yjy using a certain polyhedron
Py. The vertices v, of the polyhedron Py correspond to fixed points p, of the torus
action. For each vertex v,, they define a semigroup A, such that Spec C[A,] gives
an affine open set through p,,.

In our description, since each torus fixed point p,, represents the isomorphism
class of a f#-stable torus invariant G-constellation lying over Yy, we have a unique
G-iraffe T'y, and the semigroup S(T',). We expect that our semigroup S(T'y,) is equal
to the semigroup A,. ¢
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Chapter 3

Weighted blowups and economic

resolutions

Let G C GL3(C) be the finite subgroup of type 1(1,a,r — a) with a coprime to

T

7‘7(1)

r, i.e. G is the subgroup generated by the diagonal matrix diag(e,€?, € where

€ is a primitive 7th root of unity. The quotient variety X = C3/G has terminal
singularities and has no crepant resolution. However, there exist a special kind of
toric resolutions, which can be obtained by a sequence of weighted blowups. In
this section, we review the notion of toric weighted blowups and define round down

functions which are used for finding admissible G-iraffes.

3.1 Background: Birational geometry

In this section, we collect various facts from birational geometry. Most of these are
taken from [27] and [28].

Definition 3.1.1. Let X be a normal quasiprojective variety.

(i) A Weil divisor D on X is said to be Q-Cartier if the Weil divisor rD is Cartier

for some integer r > 1.
(ii) The variety X is said to be Q-factorial if every Weil divisor on X is Q-Cartier.

Definition 3.1.2. Let X be a normal quasiprojective variety. We say that X
has terminal singularities (resp. canonical singularities) if it satisfies the following

conditions:

(i) the canonical divisor Kx is Q-Cartier.
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ii) if ¢: Y — X is a resolution with E; prime exceptional divisors such that
12
Ky ~q ¢*(Ex) + Y _ a:E;,
then a; > 0 (resp. > 0) for all 4.

In the definition above, a; is called the discrepancy of E;. A crepant resolution

 of X is a resolution with all discrepancies zero. In particular, X is canonical.

Remark 3.1.3. If a variety X has terminal singularities, then its singular locus has
codimension > 3. In particular, terminal singularities in dimension 2 are smooth

and terminal singularities in dimension 3 are isolated. ¢

Remark 3.1.4. For a smooth variety X, let ¢: Y — X be a projective birational
morphism with Y normal. Then the discrepancy of every prime exceptional divisor
is > 1. ¢

Example 3.1.5. Let X be a smooth surface. Suppose that ¢: Y — X is the blow
up of a point in X with exceptional divisor £ = P!. It is easy to check that the self

intersection number of F is E? = —1. Assume that the discrepancy of F is a, i.e
Ky = ¢*(Kx) + aFE.
By adjunction, we get
—2 =deg(Kp) = (Ky +E)-E = (a+1)E* = —a — 1.

It follows that a = 1. ¢

Remark 3.1.6. In the surface case, it is well known that a canonical singularity
is analytically isomorphic to a quotient singularity C?/G with a finite group G C
SLy(C).

Let G be a finite subgroup of SLy(C) and X the quotient variety C?/G.
Suppose that ¢: Y — X is the minimal resolution of X. The following are known:

(i) the exceptional locus Exc(y) of ¢ is a tree of (-2)-curves.
(ii) the dual graph of the exceptional curves is a Dynkin diagram of ADE type.

The type of the group G C SLy(C) is the type of the Dynkin diagram in (ii). ¢
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Example 3.1.7. Consider the finite subgroup G in GLy(C) of type %(1, 1). The

invariant ring in Clx, y] is
(C[l', y]G =C [xrv xr—ly’ s 7$yr_17 yr]

which is the coordinate ring of the quotient variety X = C?/G.

One can show that X is isomorphic to the affine cone over the rational normal
curve of degree r. The surface X has a resolution ¢: Y — X with exceptional
divisor E = P! satisfying Og(—F) = Op1(r). By the adjunction formula, we have
Or(Ky + E) = Kp1 = Op1(—2), and hence

Ky = p*(Kx) — 2E.

-
Thus the quotient X is not canonical if » > 3. ¢

The following proposition is well known.

Proposition 3.1.8. Let X be a Q-factorial variety. Suppose ¢: Y — X is a reso-
lution of X.

(i) The exceptional locus of ¢ has pure codimension 1, i.e. Exc(yp) is a divisor.

(ii) If X has only terminal singularities, then X does not admit nontrivial crepant

resolutions.

Birational geometry of toric varieties

Let L be a lattice of rank n and M the dual lattice of L. As in Section 2.3 M can
be considered as the monomial lattice.

Let 0 be a cone in L®yzR. Fix a primitive element v € LNo. The barycentric
subdivision o[v] of o at v is the minimal fan containing all cones Cone(7, v) where 7
varies all subcone of o with v & 7.

The barycentric subdivision induces a toric morphism
XUM — UU.

The following proposition is well known in toric geometry (see e.g. [3]).
Proposition 3.1.9. Let ¥ := o[v] be the barycentric subdivision of a cone o at v.

(i) The barycentric subdivision induces a projective toric morphism
XE — Ug.
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(i) The set of 1-dimensional cones of ¥ consists of the 1-dimensional cones of o

and Cone(v).

(iii) The torus invariant prime divisor D, corresponding to the 1-dimensional cone

Cone(v) is a Q-Cartier divisor on Xx.

Example 3.1.10. Let L be the standard lattice Z3 C R? with the standard basis
e1, ez, eg. Consider the cone o = Cone(ey, e, €2+ €3, €1 +e€3). Set vy := e, vy := €3,
vs := e1 + eg + e3 and let X; denote the barycentric subdivision of o at v;.

Note that the variety corresponding to o is the quadric cone zz — yt = 0
in C*, which is singular at the origin. It is easy to see that the varieties Xy, are
smooth, so the birational morphisms Xy, — U, are resolutions of X.

The birational morphism induced by the subdivision at vs is the blow up of
the origin with exceptional divisor E = P! x P!. However, the birational morphism
induced by the subdivision at v; does not introduce a new divisor, i.e. the exceptional
locus is of codimension > 2. More precisely, the exceptional locus is P'. One can
see that there exists a morphism Xy, — Xy, which induces a projection of E onto

one factor of P! x PL.

X P! x P!
Xgl/ \:XEQ P! / \) P!
\ U / \{pt}/

Figure 3.1.1: Atiyah flop

Note that the birational map from Xy, to Xy, is an isomorphism outside

of codimension 2. This is the simplest example of a flop, which was introduced by
Atiyah. ¢

Proposition 3.1.11 (Reid [28]). Let X := U, be the affine toric variety corre-
sponding to a n-dimensional cone o. Assume that Kx is Q-Cartier. Let Y be the
corresponding toric variety of the barycentric subdivision of o at v and p: Y — X

the induced toric morphism. Suppose v is an interior lattice point in o. Then
Ky = ¢"(Kx) + ((x132 - @n, v) — 1) Dy,
i.e. the discrepancy of the exceptional divisor D, is (x1x3...%n,v) — 1.
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Proof. Let 0 = Cone(vy,vs,...,v;) be a cone in L with v; primitive vectors and
D; the torus invariant prime divisor corresponding to v;. Consider the holomorphic
n-form on the torus
dr, dxo dx,
§=— N2 N
I xI9 In
which can be extended to a rational n-form on X so that it has simple poles along

all torus invariant prime divisors on X. Thus

KX+ZD1' ~Q 0.

In particular,
Ky + ZSO_l(Dz') + D, ~qg ¢* <KX + ZDz) .

As ¢*(s) has a pole of order (z1x9 - x,,v) along the new divisor D,,

" <KX + ZDi) ~g )¢ (Di) + (wiwa -2, 0) Dy,
which proves the assertion. ]

Example 3.1.12. Define the lattice L =73+ 7Z - %(1, a,r — a) with a coprime to r
and M = Homgz(L,Z) the dual lattice. Let {e1, e, e3} be the standard basis of Z3
and o the cone in Ly generated by eq, ea, e3. Set v; := %(i,a, r —ai) € L for each
1< <r—1.

Let E; be the torus invariant prime divisor corresponding to v;. It can be
calculated from Proposition that the discrepancy of FE; is % Note that the
subdivision at v; gives the smallest discrepancy % and that any discrepancy of F; is
less than 1. ¢

Theorem 3.1.13 (Reid [27]). Let X be the toric variety corresponding to a fan X
with a lattice L and the dual lattice M. Then X has only terminal singularities

(resp. canonical singularities) if and only if any cone o € ¥ satisfies the conditions

(i) and (ii) (resp. (i) and (iii)):

(1) there exists an element m € Mg such that (m,u) =1 for any primitive vector

u of o.
(ii) there are no other lattice points in the set {u € o |(m,u) < 1} except vertices.

(iti) there are no other lattice points in the set {u € o }(m, u) < 1} except the ori-

gin.
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Remark 3.1.14. Let G C GL3(C) be the finite subgroup of type I(a1,as,as)
and L =73+ 7Z- %(061,062,063). From Theorem it follows that the quotient
singularity C?/G has only terminal singularities if and only if there are no nonzero
lattice points of L lie on and below the plane x + y + z = 1 other than ey, es, es.
In a similar way, one can see that the quotient singularity C3/G has only canonical
singularities if and only if there are no nonzero lattice points of L lie below the plane

T+y+z=1 ¢

Example 3.1.15. Define the lattice L =73+ 7Z - %(1, a,r — a) with a coprime to r
and M = Homgz(L,Z) the dual lattice. Let {e1, e, e3} be the standard basis of Z3
and oy the cone in Ly generated by ey, e2, 3.

We now show that the toric variety X := U, has only terminal singularities.
Consider m = zyz € Mg. Note that m satisfies the condition (i) in Theorem
One can show that

{ueo ‘(m,u> <1} ={0,e1,e2,€3}

so it follows that X has only terminal singularities.
In addition, since all quotient singularities are Q-factorial, X does not admit

crepant resolutions by Proposition [3.1.8 ¢

In the example above, we have seen that the quotient singularity X = C3/G
has terminal singularities if G is the group of type %(1, a,r — a) with a coprime to

r. Moreover the following theorem says that there is essentially only one case.

Theorem 3.1.16 (Morrison and Stevens [23]). A 3-fold cyclic quotient singularity
X = C3/G has terminal singularities if and only if G C GL3(C) is the subgroup of

type %(1, a,r — a) with a coprime to r.

3.2 Weighted blowups and round down functions

Define the lattice L = Z3+ Z- 1(1,a,r —a) and set L = Z* C L. Consider two dual
lattices M = Homgz(L,Z) and M = Homg(L,Z). Note that a (Laurent) monomial
m € M is invariant under G if and only if m is in M. Let {e1, e2, e3} be the standard
basis of Z3 and o, the cone in Lr generated by ey, ez, e3. Then Spec CloY N M] is
the quotient variety X = C3/G. Set v = %(1, a,r—a) € L, which corresponds to the
exceptional divisor of the smallest discrepancy (see Example . Define three

cones

o1 = Cone(v, e2,e3), o9 = Cone(e,v,e3), o3 = Cone(ey,es,v),
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and define ¥ to be the fan consisting of the three cones o1, 092,03 and their faces.
The fan > is the barycentric subdivision of o, at v. Let Y; be the toric variety
corresponding to the fan 3 together with the lattice L. Define ¢: Y7 — X to be
the induced toric morphism, which is called the weighted blowup of X with weight

(1,a,7 —a).

02 g3

v:%(l,a,r—a)

01

€3 €2

Figure 3.2.1: Weighted blowup of weight (1,a,r — a)

Let us consider the sublattice Lo of L generated by e, v, e3 and let us define
My := Homy,(L9,7Z) with dual basis

1 T a—r

§i=xy o, mi=ye, (i=y a z

The lattice inclusion Ly — L induces a toric morphism
¢: Spec Cloy N My] — Us := Spec C[oy N M].

Since Cloy N Ms] = C[¢,n,¢] and the group G := L/Ly is of type %(1,—77“,7“ —a)
with eigencoordinates &, 1, (, the open subset Us has a quotient singularity of type

é(l,jr, 7 —a). Note that for z™1y™22™3 € M >,

4,0* ($m1ym22’m3) — Emln%m1+%m2+¥mscm3‘

Similarly, consider the sublattice L3 of L generated by e, ez, v. Define the
lattice M3 := Homy(Ls,Z) with basis

The open set Us = Spec C[¢3, 113, (3] has a singularity of type Tia(l,d, r — 2a) with

eigencoordinates &3, 73, (3 with G := L/Ls.
Lastly, consider the sublattice L, of L generated by v, eo,e3. Let us define
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M := Homy/(Ly,Z) with dual basis

1 —a T

§1i=wz v, mi=yzroe, (i=zroe.

Since {v, e2, e3} forms a Z-basis of L, i.e. Gy = L/L; is the trivial group, the open
set Uy = Spec C[€1,m1, (1] is smooth.

Example 3.2.1. Let G be the group of type %(1, 3,4) as in Examplem The fan
of the weighted blowup of weight (1,3,4) is shown in Figure

Tel
092 o3
643
-516
452
-325

-261

U =1(1,3,4

€3 €2

Figure 3.2.2: Weighted blowup of weight (1,3, 4)

Let Uy be the affine toric variety corresponding to the cone oo on the left
side of v = %(1, 3,4). 1Not7e theit U; has a quotient singularity of type %(1, 2,1) with
eigencoordinates xy~ 3,y3,y” 3 2.

Let Us be the affine toric variety corresponding to the cone o3 on the left
side of v = %(1, 3,4). 1Note t3hat7 Us has a quotient singularity of type %(1, 2,1) with
eigencoordinates xz~1,yz 41, z4.

On the other hand, ez, e3, v form a Z-basis of L, so that the affine toric variety

corresponding to the cone generated by v, es, e3 is smooth. ¢

Definition 3.2.2 (Round down functions). With the notation above, the left round
down function ¢o: M — My of the weighted blowup with weight (1,a,r — a) is
defined by

po(2™y™228) = gmlnL%m1+%m2+%m3J<Tn3_
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where | | is round down. In a similar manner, the right round down function
¢3: M — M3 of the weighted blowup with weight (1,a,r — a) is defined by

1 +£ +T*a
P3(x™y™m22"3) = £y g)trml pmet sl

Y

and the central round down function ¢1: M — M of the weighted blowup with
weight (1,a,r — a) by

Lo+ emyt =2
(ZSl(xmlmeZmS) — é.lLTWLl Tm2 p mSJn?’LQCi’rLg.

Remark 3.2.3. Let ¢, be a round down function of the weighted blowup with
weight (1,a,7 — a) as above for k =1,2,3. For m € M and n € M, we have

¢k(m - n) = ¢y (m) - n,

because M}, contains M as the lattice of GG;, invariant monomials, especially, n is in
M. Thus the weight of ¢ (m - n) and the weight of ¢r(m) are the same in terms
of the G}, action. ¢

Remark 3.2.4. Davis, Logvinenko, and Reid [8] introduce a related construction

in a more general setting. ¢

Lemma 3.2.5. Let ¢ be a round down function of the weighted blowup with weight
(1,a,7 —a) as above for k =1,2,3. Let m € M be a Laurent monomial of weight j.

Then we have the following:
(i) ¢2(y-m) = ¢2(m), when 0 < j <r—a.
(ii) ¢3(z-m) = p3(m), when 0 < j < a.

(iii) ¢1(z - m) = ¢1(m), when 0 < j <r— 1.

Proof. Let m = x"y"2z™3 be a Laurent monomial of weight j. To prove (i),

assume that 0 < 7 < r — a. This means that

1 a r—a 1 a r—a r—a
0< —-mq1+—-mg+ ms3 — L*m1 + —mg + mgj < .
r r r r r
Thus ¢o(y - m) = do(x™iym2T12m3) = o (zM1y™22™M3).
The assertions (ii) and (iii) can be proved similarly. O

34



3.3 Economic resolutions

For each 0 < i < r, let v; := 1(i,ai,r — ai) be a lattice point in L. The quotient
variety X = C3/G has a certain toric resolution which was introduced by Danilov [7]
(see [28]).

Definition 3.3.1. For the group G C GL3(C) of type %(l,a,r — a), the economic
resolution of C3/G is the toric variety obtained by the consecutive weighted blowups

v1,V2,...,U,_1 from the quotient variety X = C3/G.

Let ¢: Y — X = C3/G be the economic resolution. For each 1 <i < r, let
E; denote the exceptional divisor of ¢ corresponding to the lattice point v;. From
toric geometry, we have the following proposition (see Example [3.1.12)).

Proposition 3.3.2. With the notation as above, the economic resolution Y has the

following properties:
(i) Y is smooth and projective over X.
(ii) Ky = ¢*(Kx) + Y 1<;<r LE;. In particular, each discrepancy is 0 < L < 1.

Remark 3.3.3. From the fan of Y, we can see that Y can be covered by three open
sets Ua, Us and Uy, which are the unions of the affine toric varieties corresponding to
the cones on the left side of, the right side of, and below the vector v = %(17 a,r—a),
respectively. Note that Uy and Us are isomorphic to the economic resolutions for

the singularity of %(1,—77", r—a), of fla(l,d, —r), respectively. ¢

Example 3.3.4. Let G be the group of type %(1, 3,4) as in Example The fan
of the economic resolution of the quotient variety is shown in Figure [3.3.1

Let U; be the toric variety corresponding to the fan consisting of the cones
on the left side of v = %(1,3,4). Note that Uy is the economic resolution of the
quotient %(1, 2,1) which is Go-Hilb C3, where G35 is of type %(17 2,1).

Let U3 be the toric variety corresponding to the fan consisting of the cones
on the right side of v = %(1, 3,4). Note that Us is the economic resolution of the
quotient %(1, 3,1) which is G3-Hilb C3, where G3 is of type %(1, 3,1). ¢

3.4 Elephants for the economic resolution

Let G C GL3(C) be the group of type %(1, a,r — a). Consider the quotient variety
X =C3/G.
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€3 €2

Figure 3.3.1: Fan of the economic resolution for %(1, 3,4)

Let D be the hyperplane section of X defined by z = 0, i.e. the Weil divisor
defined by « = 0. One can see that

Kx +D ~g0

from the proof of Proposition |3.1.11 Thus D is an elemenlﬂ of the anticanonical

system |—Kx/|. Moreover, D is isomorphic to the quotient C? by the group of type
1

+(a,—a) so D has an A,_; singularity.
Consider the economic resolution ¢: Y — X = C3/G. Let S be the strict
transform of D. Then one can show that S is an element of the anticanonical system

|- Ky | and that we have the following diagram:

where the vertical morphism S — D is the minimal resolution of D.

It is well known [1,/19] that the minimal resolution of A,_; singularities is
isomorphic to the moduli space of #-stable A-constellations for a generic parameter
6 where A C SLy(C) is the group of type (1, —1). Moreover, the chamber structure

of the GIT stability parameter space for A-constellations coincides with the Weyl

3Elements of the anticanonical system of a variety X are called elephants of X.
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chamber structure of type A,_; (see Section [5.1)). We expect that the morphism

Y — X might have a modular description as moduli spaces of G-constellations (see

Section .
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Chapter 4

Moduli interpretations of

economic resolutions

This chapter contains our main theorem. Section explains how to find an ad-
missible set & of G-iraffes. To find G-iraffes, we use the round down functions
introduced in Section B.2l Section [£.4] describes the universal families over the bi-
rational component Yy using G-iraffes. In Section we show that there exists a
stability parameter 6 such that G-iraffes in & are f-stable.

4.1 How to find admissible G-iraffes

4.1.1 G-iraffes for 1(1,r —1,1)

Let G be the finite subgroup in GL3(C) of (1,7 — 1,1) type, i.e. a = L or r — 1.
Kedzierski [15] proved that for G C GL3(C) of type +(1,r — 1,1), G-HilbC? is

isomorphic to the economic resolution of the quotient variety C3/G.

Theorem 4.1.1 (Kedzierski [15]). Let G C GL3(C) be the finite subgroup of type
%(1,@,7“ —a) witha =1 orr — 1. Then G-HilbC? is isomorphic to the economic
resolution of the quotient variety C?/G. In particular, G-Hilb C? is nonsingular and

irreducible.

For each 0 < ¢ <, set v; = %(z, r—1i,4). The fan corresponding to G-Hilb C?

consists of the following 2r — 1 maximal cones and their faces:

o; = Cone(eq, vi—1,v;) for1 <¢<r,

or+i = Cone(es, v;_1,v;) for1<i<r-—1.
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Each maximal cone has a corresponding (Nakamura) G-graph:

Dy = {1y, 0% ...,y 225 27" forl1<i<r,

Drpi = {1y, 0% ...,y L 2?27 for1<i<r—1,

with S(T';) = of N M for 1 < j < 2r — 1. From the fact that each cone o; is

3-dimensional, it is immediate that these G-graphs are G-iraffes.

Example 4.1.2. Let G be the finite group of type %(1,1,1). Set v = %(1,1,1).
Note that the economic resolution Y of X = C3/G is the weighted blowup of X
with weight (1,1,1). Then the maximal cones of Y are

o1 = Cone(v, eg,e3), o9 = Cone(ey,v,e3), o3 = Cone(ey,ez,v),
and the corresponding G-iraffes I'; to o; are
I = {1,x,x2}, I'y = {l,y,yz}, I's = {l,z,zQ}.

Let us consider the left round down function ¢, the right round down function ¢3
and the central round down function ¢; corresponding to the weighted blowup with
weight (1,1,1). Then

¢

Example 4.1.3. Let G be the finite group of type %(1,2,1). Set v; = %(1,2, 1)
and vy = %(2, 1,2). In this example, let &, 7, ¢ be the coordinates of C3. Note that
the economic resolution Y of X = C3/G can be obtained by the sequence of the
weighted blowups:

Y 2y 2 X,

where ; is the weighted blowup with weight (1,2,1) and ¢3 is the toric morphism
induced by the weighted blowup with weight (2,1,2). The fan corresponding to Y

consists of the following five maximal cones and their faces:

o1 = Cone(ey, e3,v3), o9 = Cone(ey,ve,v1), o9 = Cone(ey, v, e2),

o4 = Cone(es, ea,v1), 05 = Cone(es,v1,v2).
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The following

Fl = {157777]2}7 FQ = {177% C}? F3 = {LC? C2}’
Iy = {1a€7£2}7 I's = {175777}

are their corresponding G-iraffes. ¢

4.1.2 G-iraffes for 1(1,a,7 — a)

In this section, we assign a G-iraffe I', for each full dimensional cone in the fan of
Y with S(T'y) =0V N M

Let X be the quotient variety C3/G where G C GL3(C) is the finite subgroup
of type %(1, a,r —a) with a coprime to r. Let ¢: Y — X be the economic resolution
of X. Then Y can be covered by Us, Us and U;, which are the unions of the affine
toric varieties corresponding to the cones on the left side of, the right side of, and
below the vector v = %(1, a,r — a), respectively.

Assume o is a full dimensional cone in the fan of Y. We have three cases:
(1) the cone o is below the vector v.
(2) the cone o is on the left side of the vector v.

(3) the cone o is on the right side of the vector v.

Case (1) the cone o is below the vector v. This means that the toric cone o
is smooth and that the toric affine open set U, is equal to U;. Then consider the
central round down function ¢; of the weighted blowup with weight (1,a,r — a).

Now, for m = x™y™22™3 ¢ M
¢1(m) =1 ifand only if 0<my <r—1and ms =m3=0.

Thus the set T' := ¢; (1) = {1,2,22,...,2""'} is a G-graph with S(T') = oV N M.

Since the corresponding cone o(I') of I is equal to o, I is a G-iraffe.

Case (2) the cone o is on the left side of v. Consider the left round down
function ¢o. From the fan of the economic resolution, it follows that Us is isomorphic
to the economic resolution Y5 for the group Go = %(1, —r,r) with eigencoordinates

&,m,C. There exists a unique full dimensional cone ¢’ in the fan of Ys.
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Lemma 4.1.4. Let o be a full dimensional cone in the toric fan of Y on the left
side of the lattice v and o’ the corresponding full dimensional cone in the fan of Ys,
where Yy is the economic resolution for the group Go = (1, —r,r). Assume that

a

there exists a Go-graph T” such that S(T') = (¢/)Y N M. Define a set
I':={meM|¢(m) eI}

Then I' is a G-graph.

Proof. Firstly note that 1 € T since ¢2(1) = 1 € I'. To show that I" satisfies the
second condition in Definition let p € GV be an irreducible representation of G.
We have to show that there exists a unique monomial of weight p in I'. Then there
exists a positive integer i such that the weight of 2’ is p. Consider the monomial
#2(27) in My and its weight y in terms of the Gy-action. Since I' is a Gao-graph,
there exists a unique element k, whose weight is the same as the weight of ¢o (7).
Then (kix

P2 (z7)
lattice M. From Remark it follows that

) is in the Ga-invariant monomial lattice M, so it is in the monomial

Bo: - (d);;j)) — ky,

ie. al- (%) is in I". To show uniqueness, assume that two Laurent monomials
m, n of the same weights are mapped into IV. From the fact that the weights of
¢2(m) and ¢2(n) are equal, it follows that ¢o(m) = ¢2(n). From Remark

m

da(m) = 62 (n- =) = da(n) - =,

n

and hence m = n.
Lastly, to show I' is connected, let m = 2™ y™22™3 € M be an arbitrary

element in T, i.e. ky := ¢o(m) € I'". Consider the following six cases:
(A) Suppose € -k, is in I, but £ - ky # ¢2(x - m). This means that

1 a r—a
—mp + —mg +
r T

1 a r—a r—1
m3 > |—=mi+ —mo+ ——mg3z| + .
r r r r
From this equation, it is easy to show that ¢2(%) =k, and ¢y(x- %) =¢-ky.

Hence, we can see that there is a path from m to z - % in I' and that
boe- ™) = €Ky
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(B)

Suppose 1% is in I, but 1% # ¢2(). This means that

1 a r—a r—1
-my + —ma + m3 +
r T T T

1 a r—a
< |-m1+-—-m9+ ms| .
r T T

From this equation, it is easy to see that ¢o(y - m) = k, and ¢o(47) = kg—x
kx

Hence, there is a path from m to £ in T' and ¢2(*]*) = 3

Suppose 7 - ky is in I, but 7 - k, # ¢2(y - m). This means that

1 a r—a r—a 1 a r—a
—m1 + —mg + ms — < |-m1+ —m2+ ms| .
r r r r r r r

From this, it is easy to show that there exists a positive integer kg such that
¢2(y* - m) = ¢o(m) = k, for all 0 < k < kg and ¢2(y*o*! - m) = n - k,.
Hence, we can see that there is a path from m to y**! . m in I" and we get
b2 (yko+1 . m) =7- kX'

Suppose 1%‘ is in I, but %X # ¢2(%). This means that

1 a r—a
-mi + —mg +
T r

a 1 a rT—a
m3—— 2> |-mq+ —mag+ m3| .
T T T T

From this, it is easy to see that there exists a positive integer ky such that

k .
gbg(ymk) = ¢o(m) =k, for all 0 <k < ko and ¢2 (—ykg}rl) = 7" Hence, there is
a path from m to miH in I and ¢9 (yTH:”) = kTX

Suppose ¢ - k, is in I, but ¢ - k, # ¢2(z - m). This means that

1 a r—a a 1 a r—a
-mi1 + —mso + mg— — > *ml—i-;mg—i- . ms| .

T T T T r

From this, it is easy to see that there exists a positive integer k:(ﬁ such that
(bg(y%) = ¢o(m) = k, for all 0 < k < kg and ¢» (yk()%) # k,. Moreover,

¢a(z - y%) = ( - k,. Hence, there is a path from m to z - y% in I' and

4This integer ko is the maximal integer satisfying

r—a

1 a a 1 a r—a
—mi + —meo + ms— —k>|-mi1+ —ms+ ms| .
r r r r r r
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do(z- 1) = (- ky.

(F) Suppose kfx is in T, but kfx # ¢2(2). This means that

1 a r—a r—a 1 a r—a
—mp + —mg + m3 — < |-m1+ —m2+ ms| .
T T T T T T T

From this, it is easy to see that there exists a positive integer kg such that

¢2(y¥-m) = ¢o(m) =k, for all 0 < k < ko and ¢ (yk0+1~m> # k.. Moreover,

(;52(3”2'“‘) = ka From this, it follows that there is a path from m to yk[;'m in
ko. Kk

T and that ¢o(£22) = -

In proving Lemma we have also proved the following lemma.

Lemma 4.1.5. With the notation as above, for a monomial k € {£,n,(} of degree
1 and any ky, € I, there exist a monomial £ € {x,y,z} of degree 1 and an element
m, € I" such that

¢2(m-my) = k- ky

with ¢2(m,) = k.

From Remark it can be shown that

wtps (¢2(m . mp)) = ¢2(th(m . mp)),
as they are elements in I of the same weight.

Remark 4.1.6. By Lemma it can be seen that if a Laurent monomial m, of
weight j is in I' with 0 < j <r —a, then y - m, is in I. ¢

Proposition 4.1.7. With notation and assumptions as for Lemma for the
G-graph T, we have S(T') = S(I"). In particular, T is a G-iraffe with S(T') = VN M.
Proof. Note that S(I') is gemﬁmted by % form € M>p and m, € T". Let
m be a genuine monomial in M>p and m, an element in I'. From the definition of
I, it follows that ¢2(m,) is in I, which is denoted by k, € I". Set k to be mr'nr?p.
It is easy to see that k is a genuine monomial in £, 7, ( because of the definition of
the left round down function. Since Wt:(q% is G-invariant, from Remark

my)
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we have

m-m,  ¢(m-m)) B %.(ﬁz(mp) k -k,

wtr(m-mp) ¢2(wtr(m - m,)) B ¢2(wtr(m - m,)) ~ wipr (k- ky)’

so we prove S(I') € S(I"). For the reverse inclusion, let % be a generator of
S(T) with k € {&,n,¢}. Tt is sufficient to show that this generator is in S(T'). From
Lemma we can find m € M>( and m, € T satisfying ¢2(m - m,) = k - k,.
Note that wtr (k - ky) = ¢2(wtr(m - m,)). Thus we have

k-ky,  ¢om-m,)  ¢o(m-m,) = m-m,

wtrr(k - ky)  wtp (p2(m-my))  ¢o(wtr(m-m,)) wtr(m-m,)’

and we proved the proposition. O

Case (3) the cone o is on the right side of v. We can get a similar result.

Corollary 4.1.8. Let G C GL3(C) be the finite subgroup of type %(1, a,r—a) with a
coprime to r. Let Yimax be the set of 3-dimensional cones in the fan of the economic
resolution Y of X = C3/G. Then there exists a set & of G-iraffes such that there is
a bijective map Ymax — & sending o to Ty, satisfying S(Ty) = oVNM. In particular,
U(T) is smooth forT' € &.

Proof. From Section note that the assertion holds when a = 1 or r — 1. We
use induction on r and a.

Let X..x be the set of 3-dimensional cones in the fan of the economic reso-
lution Y of X = C3 /G and o an arbitrary element of ¥,,c. Then o is either on the
left side of the lattice v = %(1, a,r — a), the right side of v, or below v.

For the case where o is below v, define
Tyo= {1,222, ... 2" 2 2"}

Then we have seen that T, is a G-iraffe with S(I';) = 0¥ N M.

If the cone ¢ is on the left side of v, then we have a unique 3-dimensional
cone ¢’ in the fan of the economic resolution of %(1,—77‘, 7) where ~ denotes the
residue modulo a. Note that —r is strictly less than a. Using induction and Propo-
sition we prove that there exists a G-iraffe I', satisfying S(I'y) =" N M.

The case where the cone o is on the right side of v can be proved similarly. [
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Remark 4.1.9. Let I" be a G-iraffe in & and I" the corresponding G-graph i.e.
IV = ¢4 (") with the round down function ¢y. As in Section note that we have
the affine set D(I") through C(I') whose coordinate ring is

C [2p, Yps 2p ‘ peG] /Iy

where It = ( the quadrics in (2.5.8), f — 1|f € A(T')). Let D(I") be the affine open
set D(I') through C(I"). Similarly, the coordinate ring of D(I") is

C [fx’nxagx ‘ X € G};] /IF’

where It = < the quadrics in 1' k-1 ‘ k e A(F’)>.

We can prove that D(T") and D(I") are isomorphic by showing the following
algebra homomorphism is an isomorphism between the coordinate rings of D(I") and
D(T):

C[D(T)] = C[D(I")] given by f, — k,,
Sr(f-m,)

&1 (my)
Therefore we have the following diagrams:

where k =

, X = ¢r(p) and m, is a unique element of weight p in T

U(I") oo DY) CID(T)] —z= ClS(T)]

closed surj.

T T

U(I) S5 D), CIDI")] ——= C[5(I)].

closed surj.

IR

Ifa=1orr—1, then U(I') = D(I') for I' € & as is is G-Hilb and irreducible by
Kedzierski [15] (see Theorem [4.1.1). By induction on a and r, we can proves that
UT)=D®) for T € &. ¢

Example 4.1.10. Let G be the group of type %(1, 3,4) as in Example The
fan of the economic resolution of the quotient variety is shown in Figure [3.3.1

Let us define the following cones:
— 1 1
o1 := Cone ((1,0,0), £(1,3,4), (3,2,5)) ,
o3 := Cone ((1,0,0), 2(6,4,3), 2(1,3,4)) .

We now calculate G-graphs associated to the cones o1 and o3. Note that the left
side of the fan is the economic resolution of the quotient variety %(1, 2,1) which is
Go-Hilb C3, where G is of type %(1, 2,1). Call the eigencoordinates &, n,¢. Let o}
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3(1,2,1) 1(1,3,1) 1(1,3,1)

Figure 4.1.1: Recursion process for 1(1,3,4)

be the cone in the fan of Go-Hilb C? which corresponds to oq. Observe that the
corresponding Go-graph I'| is

I ={1¢¢,
and that the left round down function ¢s is
palamyraze) = gyl al o
Thus G-graph I'y corresponding to oy is
I, def My ¢ M} Pa(x™yM22"3) € F'l}
= {1,y,y2, z, 5, §7 %}

For the cone o9, note that the right side of the fan is the economic resolution
of the quotient variety %(1, 3,1) which is G3-Hilb C3, where G3 is of type %(1, 3,1).
Call the eigencoordinates «, 3,7. Let o) be the cone in the fan of G-Hilb C? which

corresponds to oa. Observe that the corresponding Gs-graph T, is
,2 = {1a5,ﬁ2v53}a
and that the right round down function ¢3 is

P3(z™My™22M3) = o™ Bmz,},L%mﬁ%szrémsj ‘
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Thus the G-graph I's corresponding to o3 is

I def {xmlym22m3 € M} Go(x™y™22"3) € F'Q}

_ 2 y? y? Y
—{L%%y 777;7?}-

From Example (') =01 and o(T'g) = 03. ¢

4.2 A chamber in the stability parameter space

This section proves that there exists a chamber € such that the admissible G-iraffes
in Section are f-stable for # € €. In addition, we prove that the chamber €
coincides with the cone Kedzierski found and that the chamber is an open Weyl
chamber. Moreover, it turns out that this chamber is a full chamber, i.e. the facets
of € form actually walls (see Section [5.2)).

4.2.1 Admissible chambers

Let G € GL3(C) be the finite subgroup of type %(1,@,7“ — a) with a coprime to r.
We may assume 2a < r. Let G2 and G3 be the groups of type %(1,—77", 7) and of
type Ti@(l,?, —r), respectively. Note that for & = 2 or 3, the round down function

éx, induces a surjection ¢: GV — GY.

The stability parameter space for Gy-constellations is
O = {9 € Homy, (R(Gk),(@) ‘H(C[Gk]) = 0}

where R(G}) is the representation ring of Gy, i.e. R(Gr) = GBXGGZ Zx. Let us
assume that there exists a stability parameter (") € @}, such that the admissible
Gj-graphs are §F)_stable. Take a GIT parameter fp € O satisfying the following

system of linear equations:

9(2)()() = 0(¢2_1(X)) for all x € GY,

(4.2.1)
63 (') = G(qbgl(x’)) for all X' € GY.
Let us define a GIT parameter ¢ € © to be
-1 if0<wt(p) <a,
dp)=491 ifr—a<wt(p) <r, (4.2.2)

0 otherwise.
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Note that 19((15,;10()) =0 for any x € G)/ ]’} For a sufficiently large natural number
m, set
0 := 0p +mo. (4.2.3)

We claim that the admissible G-iraffes are 6-stable.

Lemma 4.2.4. Let 6 be the parameter as above. For the set & in Corollary[{.1.8,
if I is in &, then I' is 0-stable.

Proof. Let I' be a G-iraffe in & and o the corresponding cone to I'. It suffices to
show that C'(T') is f-stable. We have three cases as in Section

(1) the cone o is below the vector v.
(2) the cone o is on the left side of the vector v.
(3) the cone o is on the right side of the vector v.

In Case (1), we have only one G-iraffe
D= {1,z2%. . . 22z '}
By Lemma any nonzero proper submodule G of C(T') is given by the set
A= {2l o7 2" 2 2"

for some 1 < j < r — 1. Since m is sufficiently large, it follows that #(G) > 0 so I is
f-stable.

We now prove the result in Case (2).

Let T' be a G-iraffe with corresponding Go-graph I'V. Let G be a submodule of
C(I') whose C-basis is A C I'. Remark and Lemma [2.5.1]imply that if m, € A
for 0 < wt(m,) < a, then ¢, (¢2(m,)) C A. Thus 9(G) > 0 from the definition of
0 as m is sufficiently large.

If 9(G) > 0, then since m is sufficiently large, it follows that 6(G) > 0.

If 9(G) = 0, then one can see that A = ¢ (#2(A4)). Let us assume that
A = ¢7"(¢2(A)). To show this, we prove that ¢2(A) gives a submodule G’ of C/(I")
and that 6(G) = #®)(G’). Since 6 satisfies the system of linear equations ,
it suffices to show that ¢2(A) gives a submodule G' of C(I”). Recall £, 1, are the
coordinates of C? with respect to the action of G5. By Lemma [2.5.1} it is enough
to show that if k - ¢o(m,) € I, then k - ¢o(m,) in ¢2(A) for any k € {£,7,(} and

50One can see if any 6 € © satisfies that 0(¢;1(x)) = 0 for any x € GY/, then § must be a
constant multiple of ¥J. This also explains the existence of a solution 0p for (4.2.1)).
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m, € A. Suppose k - ¢2(m,) € I" for some m, € A. By Lemmam there exists
m,, such that
Go(f - my) =k -k

with ¢2(m,) = ¢2(m,) for some f € {z,y, z}. In particular, f-m, € I' = ¢; ' (I").
Since A = ¢3! (¢2(A)), we have m, € A, which implies f-m, € A as A is a C-basis
of G. Thus k- ky is in ¢2(A). O

4.2.2 Root system in A,_;

We review well known facts on the A,_; root system. Let I := Irr(G) be identified

with Z/rZ. As is well known, the following three are in 1-to-1 correspondence:
(1) Sets of simple roots A.
(2) Open Weyl Chambers €.
(3) Elements of S, := {w| w is a permutation of I}.

Let {52- ‘z S I} be an orthonormal basis of Q", i.e. (¢j,&;) = d;;. Note that
the indices are in I = Z/rZ. Define

P = {81' — &

ijeLi#j}.

Let h* be the subspace of Q" generated by ®. Elements in ® are called roots. For
each nonzero i € I, set a; = ¢; — g;_4. For any root «, one can see that (a,a) = 2.
Note that
2 if i = j,
<ai,aj>: -1 if ]z’—j]:a,
0 otherwise.

This is the root system of A,_; and the Weyl group of this root system is the group

generated by simple reflections

(o, )
(0, o)

Sit o — i

It is easy to see that

si(ex —e1) = Cwi(k) ~ Ewi(D)>
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where w; is the (adjacent) transposition in S,

i+a ifj=i,
wi(j) =4 if j=1i+a,
J otherwise.

Thus the Weyl group can be thought as the group of permutations of 1.

Here, we consider roots as dimension vectors:
(i) «y is the dimension vector of the vertex simple at the vertex p;;

(ii) the dimension vector of the vertex simple at the trivial representation pg is
= D_it0 i
The stability parameter space © can be identified with the dual space of h*. Let w

be a permutation of I. As is customary (see e.g. |11]), define a set of simple roots

and an open Weyl chamber associated to w:

A(w) = {5w(i) — Ew(i—a) ed ‘Z el 7é 0} ,
Q:(w) = {9 S (h*)* | 9(50.;(1) — 5w(ifa)) >0 Viel,i# 0} .

In particular, for the identity permutation of I, the corresponding simple roots A

and Weyl chamber € are

Ay ={ei—ciac®|icli#0}={wl|icl,i#0},
¢, ={0e () |0(a;) >0 Viel,i#0},

which is the cone © for G-Hilb in (2.2.10).

A chamber in stability parameter space. For each ¢ € I, let p; denote the
irreducible representation of G of weight i. Note that each root o can be considered
as the support of a submodule of a G-constellation. In other words, «; corresponds
to the dimension vector of p;. Thus in general root a = ), n;c; is the dimension
vector of the representation ®n;p;. Abusing notation, let a = ), n;a; also denote
the corresponding representation @&mn;p;.

Let A be a set of simple roots. Define a subset € of © associated to A as

C:=¢(A):={0cO|0(a) >0 YaecA}.
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At this moment, €(A) is not necessarily a chamber in © because €(A) may contain

nongeneric elements.

4.2.3 Admissible sets of simple roots

In this section, we define the admissible set of simple roots A, for the group of type
%(1, a,r — a). The Weyl chamber €, corresponding to the admissible set of simple
roots is equal to the GIT stability parameter cone in [16].

Remark 4.2.5. Kedzierski [16] described a cone of GIT parameters with a set of
inequalities. One can easily see that this can be described using the root system
A,_1. He conjectured the cone is a full chamber. In Section we prove that the

conjecture is true. ¢

Firstly, we consider the case of %(1, r —1,1). Secondly, we define the admis-

sible set of simple roots for %(1, a,” — a) using a recursion process.

The case of %(1,7’ —1,1). From Theorem we know that the economic
resolution of the quotient variety X = C3/G is isomorphic to G-Hilb C? where G is
of type %(1,7‘ —1,1). Thus in this case, the G-iraffes are just Nakamura G-graphs
which are 6-stable for 8 € O, where

Oy = {9€@|9(p)>0forp7épo}.

In terms of the root system, 6(a;) > 0 for nonzero i € I. Note that a; = &; — €;_4.

Thus the corresponding set of simple roots is
A={ei—ciq€®|icl,i#0}.

Example 4.2.6. Consider the group of type z (1 2,1). Let {EJL |j =0,1, 2} be the

standard basis of Q3. Then the corresponding set of simple roots A is

{51 52,52 _50L}‘

On the other hand, for the group of type (1 3,1), let {5? ‘ k=0,1,2 3} be
the standard basis of Q*. Then

R R _R R
{51 52752 €3,635 — &0 )

is the corresponding set of simple roots for type (1 3,1). ¢
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The case of 1(1,a,7 —a). Let G be the group of type 1(1,a,r — a). Let us
assume that for 1(1,=7,7) and —-(1,@, —r) we have sets of simple roots AL and
AR respectively. Note that AL is a set of simple roots in A,_; and A is a set of
simple roots in A,_,_1. As in Section let

{ef'|l=0,1,...,a—1}, {ef|k=0,1,....r—a—1}

be the standard basis of Q% and Q"~%, respectively. From the two sets of simple
roots AL and AR, we construct a set A of simple roots in A,_; as follows. Firstly,
as in Section let the standard basis {5i ’z el } of Q" be identified with the

union of the two sets
{z-:lL‘l:O,l,...,a—l} and {skR‘k:O,l,...,r—a—l}

using the following identification:

elL =g w%thizl mod a, r—a<i<r, (4.2.7)
el =¢ withi=k mod (r—a), 0<i<r—a.
Secondly, with this identification, define a set A of simple roots
L R
A = A U {ELEJG’ - 6(T*2@)7L%J(T*G)} U A . (4.2.8)

Note that A is actually a set of simple roots in A,_1.

Remark 4.2.9. Note that if 5lL — 5£ is a positive sum of simple roots in A”, then

the corresponding root of A,_1 is also a positive sum of simple roots in A. Moreover,

€ZL — ekR can be written as a positive sum of simple roots in A: note that e|r |, is

identified with a vector & and that €(r—2a)—| =22 |( is identified with a vector

ef*: since we add the root €12 )a = E(r—24)—|T=22| (r_q) O A, EZL — Ek,R is a positive sum

r—a)

of simple roots in A. ¢

Definition 4.2.10. With the notation as above, we call the set A of simple roots
the admissible set of simple roots for G = %(1,a,r — a), which is denoted by A,.

For the admissible set of simple roots, define
€, :={0ecO|0(a) >0 VaecA,}

with considering roots o = Zl n;q; as corresponding representations @Gn;p;. We call
¢, the admissible Weyl chamber for G = %(1, a,r —a).
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As is stated in Section [£.2.2] note that a set of simple roots A, is determined
by and determines a permutation of I = Z/rZ. Indeed,

Ay = {Ew(i) — €w(i—a) }Z €l,i# O}

for a unique permutation w: I — I.

Let {91}::_11 be the dual basis of the GIT parameter space © with respect to
{ai}iZ], ice. 0i(ay) = 6ij. Set g = — Z:;ll 0;. As is standard, we can present the
rays of the Weyl chamber €, using this basis and the permutation w: the rays are

generated by the following vectors

1
(btjor+a — buija)) (4.2.11)

7

Il
o

J

fori=1,2,...,r—1. Thus any 0 € €, is a positive linear sum of the vectors above
in (4.2.11)).

Proposition 4.2.12. Assume that a < r—a. Let 0 be an element in the admissible
chamber €,. Then 0(«y;) is negative if and only if 0 < i < a. Therefore any 0-stable
G-constellation is generated by po, p1,-- -, Pa—1-

Proof. Let 8 € €,. Recall that any root can be written as a sum of simple roots and
that elements in A, are positive on 6.

Suppose that 0 < ¢ < a. From the identification , one can see that ¢;
is identified with skR for some [ and that ¢;_, is identified with le for some [. By
Remark the root a; = ¢; —ej_q = et — el is a negative sum of simple roots
in A,.

Suppose that »r — a < i < r. Consider the root o; = ¢; — €;_,. From the
identification , one can see that ¢; is identified with 5£ for some [ and that
€i_q 1s identified with aﬁ for some I. Thus a; = & — £f is a positive sum of simple
roots in A, by Remark

Consider the case where a < i < r — a. The root a; = ¢; — g;_, is a sum of
simple roots in A, A recursive argument yields that «; is a positive sum of simple
roots in A, Thus o is a positive sum of simple roots in A, by Remark

To prove the last statement, let F be a #-stable G-constellation. Consider
the submodule G of F generated by po,p1,...,pa—1. If G # F, then 6(G) < 0.
Therefore we have G = F. UJ

Example 4.2.13. Let G be the group of type %(1,3,4). From the fan of the
economic resolution of this case (see Example [3.3.4]), the left and right sides are
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the economic resolutions of singularities of %(1, 2,1) and i(l, 3, 1), respectively. By
Example we have two sets

AL ={eb — el el — by and AR = {eFf — f B — R Bl
As in the construction , the admissible set of simple roots is
Aq ={e4 —€5,65 — 6,66 — €1,61 — €2,62 — €3,€3 — €0},
where the underlined root is the added root as in . In terms of a; = ¢; —¢;_g,
Ay ={ou+ a1, 05+, —a1 — a5 — g, 1 + as, a2 + ag, a3}
Thus the set of parameters 6 € © satisfying

0(ps ® p1) >0, 0(ps @ p2) >0, O(p1®ps D p2) <O,
0(p1 ® ps) >0, O(p2 @ ps) > 0, 0(p3) >0

is the admissible Weyl chamber €, where p; is the irreducible representation of G
of weight 7.

The corresponding permutation w is
03625 14
w =
03 216 5 4

ie. w(0) =0, w(3) =3, w(6) =2, etc. The rays of the Weyl chamber &, are the row

vectors of the matrix

-1 0 01000
-1 0 00 001
-1 0 -1 0 0 1 1
-1 -1 -1 01 1 1
-1 -1 0110
-1 0 00100

with the basis {6;}. Note that for any 0 € €,, 6(«a;) is negative if and only if
0<i<3. ¢
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4.2.4 An open Weyl chamber

In this section, we prove that the stability parameters described in Section [4.2.1
form an open Weyl chamber. It follows that our stability parameters are the same
as Kedzierski’s in [16].

Let G C GL3(C) be the finite subgroup of type %(1, a,r — a) with a coprime
to r. We may assume 2a < r. Let GGo and G5 be the groups of type é(l,?r, 7) and of
type 7i(l(l,F, —r), respectively. To use recursion steps, assume that the admissible
set of simple roots A” and A give the full chambers ¢© and ¢®. Let A, be the

admissible set of simple roots and €, the admissible Weyl chamber for 1(1,a,r —a).

We prove that €, is a full chamber such that the admissible G-iraffes are
f-stable for § € €, by the following three steps.

Step 1 Firstly, we prove that for any 6 € €,, there exist #) € ¢~ and 63 ¢ ¢F
such that 6 is a partial solution of the system of linear equations (4.2.1). Let 6 be
in ¢,. Let us define 3, 63 to be

0P (x) =0(d3'(x))  for x € GY,
63 (x') = 9(@53_1()(’)) for ¥’ € GY.

It suffices to show that 82 e ¢L and ) e ¢E. Let x: be a character of G2 whose
weight is [. Then

o5 (x))={pi€GV|0<i<r i=1 moda},

by the definition of the left round down function, so the dimension vector of ¢5 ! (x1)

in terms of roots is

Z o = Z (Ei—ei_a):a{“.

0<i<r, 0<i<r,
1=l mod a 1=l mod a

Note that 6 is positive on A,. In particular € is positive on the roots coming from
AL, From this, it follows that 8®) is in ¢L. For ), we can prove the assertion in

a similar way.

Step 2 Secondly, we prove that the vector 9 in is a ray of the chamber &,.
From this, it follows that any § € €, can be written as the form so admissible
G-iraffes are #-stable.

Let ¢ be the vector in . As is well known, 1 is a ray of the Weyl
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chamber €, associated to the set of simple root A, if and only if there exists a
unique simple root v in A, such that ¥(«) is positive and 9 is zero on the other
simple roots in A,. A simple observation shows that ¥ is zero on the sets AL and
AR with the identification . It remains to show that ¥(«) is positive for

X=Eta T Er—20)-[ 2222 |(r—a) = €|L)a T Er—2a

= Z o+ Qp—g-

pi€ds "(A)

for a subset A of GV. Since ¥(A) =0 and J(c,—q) = 1, we have ¥(a) = 1.

Step 3 Lastly, we prove that the chamber is a full chamber. By Step 1 and Step 2,
we prove that the Weyl chamber €, is a cone in © such that the admissible G-iraffes
are f-stable for # € €,. By Section [5.1] and considering the torus invariant G-
constellations which x acts trivially on, it is immediate that the chamber structure
in © is finer than the Weyl chamber structure of A,_;. Therefore the admissible
Weyl chamber is a full chamber in the stability parameter space O (see Section .

We have proved the following proposition:

Proposition 4.2.14. For the set & of G-iraffes in Corollary there exists
an open Weyl chamber €, C © such that T' is 0-stable if I' € & and 6 € &,.

Furthermore, the chamber €4 is a full chamber in ©.
From Step 3, we make the following conjecture:

Conjecture 4.2.15. The chamber structure of the GIT stability parameter space ©

of G-constellations coincides with the Weyl chamber structure of A,_1.

4.3 Main theorem

Theorem 4.3.1 (Main Theorem). Let G C GL3(C) be the finite subgroup of type
%(1,@,7‘ — a) with a coprime to r. Let Xax be the set of 3-dimensional cones in
the fan of the economic resolution Y of X = C3/G. Then there exist a set & of
G-iraffes and 6 € © such that:

(i) there exists a bijective map Ymax — & sending o to T'y with S(T'y) = oV N M.
(ii) every L'y is 0-stable if 'y € &.

Thus Y is isomorphic to Upeg U(T). In particular, U(T) is smooth for any T' € &.
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Proof. Corollary [£.1.8 shows that there exists a set & of G-iraffes satisfying the con-
dition (i). For the set &, Lemma shows that there exists a stability parameter
0 satisfying the condition (ii). O

Corollary 4.3.2. With the notation as Theorem[4.53.1], the economic resolution Y
1s 1somorphic to the birational component Yy of the moduli space My of 0-stable

G-constellations.

Proof. The main theorem proves that the economic resolution Y is isomorphic to
Uree U(I). From Proposition there exists an open immersion from Y to Yp.
This open immersion is a closed embedding because both Y and Y}y are projective
over X. Since both Y and Yj are 3-dimensional and irreducible, this embedding is

an isomorphism.
Y = UFG@ Ul)——Yy

IM\ lproj.

X
O

By the construction of this family, we have seen that elements in I' form a

C-basis of the G-constellation over p € U(T").

Conjecture 4.3.3. The moduli space My is irreducible. In particular, any 0-stable
G-graph T is in the set & in Theorem [[.3.]]

If this conjecture holds, then the moduli space My is isomorphic to the
economic resolution. From Remark it is enough to show that torus invariant

f-stable G-constellations corresponding to I' € & are all of 8-stable torus invariant

1
2k+1

is true so My is isomorphic to the economic resolution for 6 € €,. We hope to

G-constellation. In the case G = (1,2,2k — 1), we can prove that Conjecture

establish this more generally in future work.

Remark 4.3.4 (Link to [16]). Let G C GL3(C) be the group of type 1(1,a,r —a)
and A C SLy(C) the group of type 2(a,r — a).

Kedzierski [16] describes a Weyl chamber € C © such that the normalization
of Yy is isomorphic to the economic resolution Y of X = C3/G for § € €. In his
description, he did not use the root system A,_1, but a set of inequalities, however

his description is essentially the same as using the root system.
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His tactic in [16] is using the anticanonical system described in Section

(See also Section [5.2)):
S——=Y

bt

More precisely, the elephant S given by £ = 0 in Y is the minimal resolution of D,
where D is the divisor given by z = 0 in X = C3/G. By the 2-dimensional McKay

correspondence, S is isomorphic to the moduli space of #-stable A-constellations and

u:@ui

i€l

there is a universal family

over S. He constructed line bundles £; on Y such that £;|g = U; for each i € I.
He proved that the collection of the line bundles is a gnat family [20] and that the

family induces a bijective morphism from Y to Yjp. ¢

4.4 Universal families

In the previous sections, we assigned a #-stable G-graph I', to each full dimensional
cone o of the fan of the economic resolution Y of X = C3/G, where G is of type
%(1, a,r — a) with a coprime to r. This section describes the universal family over
the economic resolution Y.

Let p be an irreducible representation of G. From the data (o,T',), for each
full dimensional cone o, there exists a unique Laurent monomial m, € I', whose

weight is p. The data {m,} is called the canonical data of p.

Remark 4.4.1. This canonical data gives a line bundle, which is called a universal
family over Yy = G-HilbC? if a = 1 or r — 1. ¢

Proposition 4.4.2. Let p be a fized irreducible representation of G. The canonical

data {m,} of p gives a line bundle L, on'Y satisfying L,|y, = Oy, (div m;l). In

other words, L, is the line bundle corresponding to the Cartier divisor D, defined

by Dyly, = divm, |y, for all o.

my

m. vanishes

Proof. From general toric geometry (see e.g. [3]), it suffices to show that
on the intersection o N o’ for any two adjacent cones o, o’. Suppose that the
intersection is the cone generated by uj,us € L and then it should be shown that

. . / / !
(uy, nn::,) is zero for ¢ = 1,2. Set m, = x™'y™22™3 and m, = x™1y™22"3. There

are four cases:
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(1) Both o and o’ are cones in either the left side or the right side.

(2) One of them is the cone on the central side and the other is the cone on the
central side of the left side.

(3) One of them is the cone on the central side and the other is the cone on the

central side on the right side.

(4) One of them is the most right cone of the left side and the other is the most
left cone of the right side.

§

Case (1) Case (2) Case (4)

Figure 4.4.1: Four cases for two full dimensional cones in the fan of Y

Case (1) Assume that the cones are on the left side. Let ¢2 be the left round
down function of the weighted blowup with weight (1,a,r — a). Since the weights

of m, and m, are equal to p, 2= = ¢y(22=). By induction on r, it follows that

m_/ m,/
(ui, =) = 0.
o

Case (2) Assume that o is the cone on the central side and that ¢’ is the cone on
the central side of the left side. Note that the G-graph for o is {1,x, 22, ..., 27!}
and that the G-graph for ¢’ is

{me M|gs(m) e {1,¢,....677}}.
Thus, with the fact that both m, and m,s have the same weights,

m, =x™ for some 0 < mq1 <7,

/ / .
m, =z"ym for some 0 <m) <a with m}+ amb=m.

Since o N ¢’ = Cone <(0,0, 1), %(1,(1,7‘ — a)), the Laurent monomial ;2< vanishes

on the intersection.
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Case (3) Case (3) is similar to Case (2).

Case (4) Assume that o is the most right cone in the left side and that o’ is
the most left cone in the right side. Note that o N ¢’ is the cone generated by
(1,0,0), 2(1,a,7 — a). Similarly to Case (2), note that

/ !
m, =y, my, =y

mey :
— vanishes on

o

with amg + (r — a)mg = amb + (r — a)m%. Hence it follows that

the intersection. O

Remark 4.4.3. For the trivial representation pg, 1 is in every G-graph and hence

the line bundle for the trivial representation is Oy . The direct sum of all such line

bundles
L=@pz,
peEGY
is a gnat family in the sense of [20], which is the same family in |16]. ¢

Example 4.4.4. Let G be the group of type %(17 3,4) as in Example Let p
be the irreducible representation of G' with weight 1. Consider the line bundle £, as
in Proposition [£.4.2] In Figure [£.4.2] the monomial in a maximal cone o is a unique

element in I', whose weight is 1. ¢

Ter

<
< |w
< |w
Nw‘ﬁw
N

N

N

134
x

€3 €2

Figure 4.4.2: Elements of weight 1 in I, for %(1, 3,4)
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4.5 Example: type %(1,7, 5)

In this section, as a concrete example, we calculate the set of G-iraffes and the
admissible set of simple roots A, for the group G of type %(1, 7,5).

Let G be the finite group of type %(1, 7,5) with eigencoordinates x,y, z and
L the lattice L =73+ 7Z - %(1, 7,5). Let X denote the quotient variety C3/G and
Y the economic resolution of X. The toric fan ¥ of Y is shown in Figure

Te
L /U5
V10
012 011 J10 09 o8 a7 ] 05 04 g3 g2 01
L U3
L Vg
76
o U1 T2
L Ve
7
L T3
V11
L Tg
4 T
5
L Tl
9
78
2
T4
T 10
v7
70
€3 + + + t t t t t t + + €92

Figure 4.5.1: Toric fan of the economic resolution for - (1,7,5)

To use the recursion process as in Section we need to investigate the
cases of type %(1,2,5) and of type %(1,2,3). Let G2 be the group of type %(1,2,5)
with eigencoordinates &3, 72, (o and G5 be the group of type %(1, 2, 3) with eigenco-

ordinates £3,73, (3. Consider the toric fans Yo and X3 of the economic resolutions
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for the type (1 2,5) and the type (1 2,3), respectively.

4.5.1 G-iraffes

We now calculate G-iraffes corresponding to two full dimensional cones in X

o4 = Cone (%(12,0,0),%(3 9,3), 5(8,8 4))
my = Cone (5(1,7,5), 5(3,9,3), 5(8.8,4)).

Note that the cones 04,73 are on the right side of the lowest vector v = #(1,7,5).

Their corresponding cones o, 74 in X3 to o4, 73, respectively are

o4 = Cone (§(5, 0,0),1(1,2,3), 1 (1, 1,4)), (4.5.1)
7, = Cone (%(0, 0,5),1(1,2,3), (1, 1,4)). (4.5.2)
Tel te Te
o o
— —
74 75
es (D) es (D) es3 €2
L1, 1(1,2,3) (1,7,5)

Figure 4.5.2: Recursion process for (1,7, 5)

Observe that the cones oy, 74 are on the left side of ¥3. To use the recursion,
let G32 be the group of type %(17 1,1) with eigencoordinates {32,732, (32. Let X539
denote the fan of the economic resolution of the quotient C?/Gsa. In Y32, there

exist two cones o, 74 corresponding to o)y, 75, respectively:

O'Z = Cone (%(2, 070)7 % %
’Tél :COHC (%(07072)’%(07270)’%(1’1’1))

/!

As is in Example [£.1.2] the Ggp-graphs I’y and I'j corresponding to o, 74
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are

FZ = {17 C23}7
ry = {17523}-
Using the left round down function ¢s for 1(1,2,3)

a, brc a La+2l57+3CJ c
®32: §3m3C3 > E39M30 (32,

we can see that the corresponding Gs-graphs I'j and I'; corresponding to o7, 74 are

def -1 I /! = [7 bl ? :
def — I / = l 5 bl 53

To get the corresponding G-iraffes 'y, I's to o4, 73, respectively, we use the right

round function ¢ for -5 (1,7, 5):

. .a, b_c a, b La+71b2+5cJ
P31 xy’z" = EynaQy :

We get
def | —1 v y y® y? 2 .3 .4 2% 25 28
ry = d)3 (F4) = {173/7;777?7272 )R R Yy Ty y [0
def |, 1 1 2 z 2 g2 2
F3 - ¢3 (F2) = {1756’1:2)33'2 )xy77y7y)%ay77?;7)zvz .

Let us consider the following two cones:
o9 = Cone (5(12, 0,0, 5(9,3,9), (4,4, 8)),
77 = Cone (%(2, 2,10), 5(9,3,9), 5 (4,4, 8)).

Observe that the cones og, 77 are on the left side of v. The corresponding cones oy,

T4 in X to oy, 77, respectively are
ol = Cone (%(12,0,0), 1(5,3,4), %(2,4,3)),
7/ = Cone (%(1, 2,5),1(5,3,4), 1(2, 4, 3)).

Note that the cones 0§, 74 are on the right side of the fan ¥ and that the right side
is equal to the fan ¥3 of the economic resolution for %(1, 2,3). Moreover, the cones
in X3 corresponding to of, 7 are o}, 74, respectively in (4.5.1). Thus we have the
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corresponding Gag-graphs I'g, I'/ are:

FIQI = {17 123, 77537 C237 @73}7

123
/= {1, 23, §23M23, 23, 77%3},

where (a3 is the group of type %(1, 2,3) with eigencoordinates £23, 123, C23. Using

the right round down function ¢93 for %(1, 2,5)

a, brc a b LMJ
G231 E9maCy > E3Maslay T T,

we can calculate the corresponding Go-graphs to of, 74

dof B 2 3
Ty = ¢y (T4) = {1, 12, M3, G2, G35 %’ fvi}
def
F/7 = ¢231(F,7/) - {17 2, Eam2, €2C2, M2, 7737 G2, CQQ}

Lastly, from the left round down function ¢9 for 1—12(1, 7,5)

b La+7b+5cJ
Go: Yy’ = Lgmy P

3,
it follows that the G-iraffes I'g, 'y corresponding to og, 77 are:

_ 2 3.4 .5 2 22 22 2 3
PQ—{L%Z/,Z/ayavaaZ7377727;3:?3 )

P7 = {17 z,ry, $y27 37CU37 rz,Y, y27 y37 y47 y57 Z}.

For each 0 < i < 12, let v; denote the lattice point %(%, i,12 — ) in L. For
the cones o in Figure[4.5.1]in page[61], Table in page[66]shows the corresponding
G-iraffe I',.

4.5.2 Admissible set of simple roots

Now we calculate the admissible set of simple roots for 1—12 (1,7,5). Since for the group
of type %( 1,7—1,1), the economic resolution is G-Hilb, note that the admissible sets
of simple roots for §(1,1,1) and $(1,2,1) are {e1—eo}, {e1 —€2,22—¢€0}, respectively.
By the identification , that the admissible sets of simple roots for %(1, 2,3) is

{63 — &4, €4 — &1, €1 — €2, €2 — 60},
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where the underlined root is the added root as in (4.2.8). Similarly, the admissible

sets of simple roots for %(1, 2,5) is
{es —c6, €6 — €3, €3 — €4, €4 — €1, €1 — €2, €2 — &0}

Lastly, the admissible set of simple roots for %(1, 7,5) is

{55 — &6, €6 — €10, €10 — €11, €11 — €8, €8 — &9, &9 — 67,}

€7 —E3, €3 — &4, €4 — €1, €1 — €2, €2 — &0

Note that corresponding permutation w is

0729 411 61 8 3 10 5
02143 7 981 10 6 5/

With the dual basis {6;} with respect to {«;}, the row vectors of the following matrix
is the rays of the admissible Weyl chamber €,:

-1 0 0 0 00O01O0O0O0O0
-1 0 -1 0 0O0O0O1O0T1O0O0
-1 -1 -1 0 00O01110O0
-1 -1 -1 0 -1 0011101
-1 -1 -1 -1 -1 00 1 1111
-1 -1 0 -1 -1 0001111
-1 -1 0 -1 00O0O01O0T11
-1 -1 0 0 00O0O0O0O0OT1T1
-1 -1 0 0 001O0O0O0T1O0
-1 -1 0 0 01 100O0O0O0
-1 0 0 0 010O0O0O0O0O0
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Coordinates

Cone | Generators G-iraffes I',,
on U,
01 €1, €2, V11 1’Z’z2’z3’z4725’26’27’28729’2107211 %72%7212
02 €1, 710, V11 1’y’%72;722723’24’25726,27728729 z£5’zyT20’Zyi
g3 €1, V9, V10 1aya%7%a§a§7§7%72722723724 %’g’%
04 €1, Vs, V9 1,y,%,%,%§,2,22,23,24,%,%,% %’g’gj%
05 €1, 07, V8 Ly, Y, j,f‘;—i,g—i,g—i,g—i,g—i,g—;‘,z,z2 %,§7§
06 €1, Ve, U7 1 ' Y5 % Z2 % %7%7%7%7%7%?% %’%’;ﬁé
a7 €1, Vs, Ve 1yy y ZZ2§ %7;%7;%,;72?;% xzij’%’z%
o8 €1,V4, V5 1,y’y27y3ay4ay57%?ga£52’227§ %’Zé’§
g9 €1, V3, V4 1ay,y27y3ay4ay532az a%>§v§%v§% 2%3’27:’33%
g10 €1, V2,03 17y7y2vy37y4ay5ay67ga%agang %’%’%
g11 €1, V1, V2 1ay7y2ay35y47y57y6vzaivyévy%vy% #’Z#’;%
o2 | er,es v Ly y? oyt o8 yT % 0 w0yt | Sy
I ea, v, v11 | 1, x2, 2%, 223, w24, 2%, 122, 2, 22, 23, 24 %p&%
T V9, V10, V11 1,1:,27:1:,2,22,x22,z3,x23,24,$24,y,% %Z,T;>§
T3 v7, Vg, Vg Lx,xy,%7:132,5622,1;,;,7,;2,2,,22 %,%7%
T4 €a, U7, Vg 1,2, 22, 23, 2%, 2,222, 222,232, 2% 2, 2, 22 %5,&7;%
T Vg, Vg, U7 1z, 2y, oz, 222, & 7 z2, 2%y, y, 2 2,% %a%>%
T6 Vg, Vs, Vg 1,z, 2y, x2, 222, zz? =Yy ,y3,z,22,§ Z—i,f—;,;—;
7 V2, U3, U4 1,x,xy,xy2,$y3,xz,y,yQ,y3,y4,y5,z %’%GZ’:UZ*;
T8 V9, V4, V7 1,x,J:y,:l:Z,xQ,ny,lB,x3y,x4,x4y,y,z %57%27%
) es,v,v2 | La,ay,ay?, ayd, oyt y, 2 v3 vt o0 o0 %%ﬁ
T10 es, U2, U7 1z, zy, 22, 2%y, 23, 23y, «*, 2y, 25, 25,y %77%271%
T0 €92, €3,U7 ].,.’E,$2,$3,x4,x5,$6,$7,x8,$9,{1:10,.’1}'11 x127%;xi5

Table 4.5.1: G-iraffes for G = £(1,7,5)
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Chapter 5

Further discussion

5.1 Torus invariant G-constellations for type (1, 1)

For a finite subgroup of G C SLy(C), it is well known that the GIT stability param-
eter space of G-constellations has the same chamber structure as the Weyl chamber
structure for the root system corresponding to the type of the group G (see [6,19,30]).
In this section, we describe explicitly torus invariant G-constellations for each cham-

ber of the GIT stability parameter space where the group G is of type %(1, —1).

5.1.1 Chambers of GIT stability parameter spaces

Let G C SLg(C) be the finite group of type %(1, —1) with coordinates y,z. Set
T = (C*)2. Let p; be the irreducible representation of G' whose weight is i. We can
identify I := Irr(G) with Z/rZ.

Let {EZ‘ ‘ 1€ I} be an orthonormal basis of Q", i.e. (g;,€5) = d;;. Define

b= {Ei—e’fj

ijeli#j}.

Let h* be the subspace of Q" generated ®. Elements in ® are called roots. For each
nonzero i € I, set o; = &; — g;_1. Set S, := {w ‘ w is a permutation of I}.

The stability parameter space © can be identified with the dual space of h*
by considering roots as dimension vectors. Note that AL = {ai ’z el,i# 0} is a

set of simple roots and the corresponding Weyl chamber € is

¢, ={ecO|f(a)>0 VaecA,}
={0€0|0(p) >0 Ypi#po},

which is the chamber ©, for G-HilbC? in ([2.2.10). Let {01}:;11 be the dual basis
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of the GIT parameter space © with respect to {a;}/_], i.e. 6;(cj) = §;;. Using the

basis {&;} with the standard inner product, we can write:
i—1
== 5
j=0

for1 <i<r—1. Set by =— Z:;ll ;. As is standard, we can present the rays of the
Weyl chamber €(w) using this basis and the permutation w: the rays are generated

by the following vectors
i—1

Z w(i)+1 ~ b)) (5.1.1)
=0
fori=1,2,...,r — 1, which is the dual basis with respect to the set of simple roots

A(w).

5.1.2 Lacings for each chamber

On the other hand, any torus invariant (connected) G-constellation is given by
a lacing. The following definition originates from the idea in calculations due to
Nolla [26] and Reid.

Definition 5.1.2. A lacing A for G = 1(1,-1) consists of two subsets (AY, A%) of
Irr(G) = Z/rZ such that:

(i) |AY] + |A*] = r + 1 where || is the cardinality of the set.
(i) if i € AY for i € I, then i + 1 € A%,

For a generic # € O, a lacing A is said to be 0-stable if the G-constellation corre-

sponding to A is #-stable.

Proposition 5.1.3. Let G be the finite group of type %(1, —1). Let 0 be a generic
parameter in ©. There exists a 1-to-1 correspondence between the set of isomorphism

classes of 0-stable torus invariant G-constellations and the set of 8-stable lacings.

Proof. Let F be a f#-stable torus invariant G-constellation. Define A = (AY, A%) to
be

={iel|y; =0},

={iel|z=0},

where y; (resp. z;) is the y-action (resp. z-action) on the basis of Ce,,. Then A is
a lacing. Indeed, as the monomial yz is G-invariant, it gives a cycle around each

vertex, so ;7,41 must be zero by Lemma [2.6.4] i.e. one of y; and z;41 must be zero.

68



Thus the condition (ii) in Definition is satisfied. For the condition (i), note
that as F is O-stable, it is connected, and so we need at least » — 1 nonzero arrows.
This shows that A is a lacing.

For the converse, let A = (AY, A?) be a lacing. We define a G-constellation F
as follows: the G-constellation F is ®;c7Ce; as a C-vector space where ¢e; is a basis

of Cp;, whose Cly, z]-module structure is given by:

eiv1 ifi & AY,

yxep =
0 ifi e AY,
€;—1 if ¢ g AZ,
zZ*xe =
0 if 1 € A%,
One can easily show that F is a torus invariant G-constellation. O

Remark 5.1.4. For those familiar with McKay quivers, the set AY is the index set
for vanishing y; and the set A* is the index set for vanishing z;. The corresponding
G-constellation does not have any (undirected) cycle so it is a torus invariant G-
constellation by Lemma ¢

Lemma 5.1.5. Let A = (AY, A*) be a lacing and 0 € © generic. Then A is 0-stable
if and only if (e, —e1—1) > 0, for any k € AY and | € A*.

This Lemma can be proved by the same method as the proof of Lemma 8.3.
in [16].

Proof. Let F be the G-constellation corresponding to A. It is enough to consider
submodules of F whose support is {l,l + 1,...,k} for any I,k € I. Let V be a
submodule of F whose support is {l,l +1,...,k}. Remember that a; = ¢; —g;_1 is
considered as the dimension vector of the vertex simple at the vertex . Note that

O(V)=0(e1 —e-1) +0(e131 — 1) ... + 0 — €x—1)

=40
=0 — €1-1).

Note that V is a submodule if and only if 4, and z; are zero linear maps, i.e. k € AY

and [ € A?. Therefore the assertion is proved. O

Let w be an element in S,, €(w) the Weyl chamber corresponding to w, and
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A(w) the set of simple roots, that is,

A(w) = {Ew(i) — Ew(i—1) ced |Z el 75 0} ,
Cw):={0€0[b(a)>0 VaecAw)}.

Since My is irreducible for € €(w) by [1L[19], the number of #-stable lacings should

be r. We prove the following proposition by explicit calculations.

Proposition 5.1.6. Let w be an element in S,, €(w) the Weyl chamber correspond-
ing to w as above. Let 6 be in the chamber €(w). Then there exist exactly r 0-stable
lacings. They are Aj = (A?,A;) for each 1 < j < r where

Aé! ={w(-1),w(d)...,w(r—1)7},

. (5.1.7)
A ={w(0)+1Lwl)+1...,w(G—1)+1}.

Proof. First, from the definition of the chamber €(w), note that 9(%(2-) — ew(j)) >0
if and only if ¢ > j.

By Lemma, our A; is f-stable. It is enough to show that they are all
f-stable lacings.

Let A = (AY, A#) be a #-stable lacing.

Suppose w(0) is in AY. By Lemma only w(0) + 1 can be in A* and
hence from the condition (ii) in Definition AY = I. The number of elements
in AY must be one, so A* = {w(0) + 1}. Therefore A = A;.

Suppose j is the minimum such that w(j — 1) is in AY. By Lemmal5.1.5] only
w0)+1Lw(l)+1,...,w(j — 1)+ 1 can be in A*. Hence

|[AY|<r—j+1 and |A*[<].
Since | AY | + | A* |=r + 1, we have

A ={w(j = 1),0() - w(r =1},
A = {w(0)+1,w@)+1...,w(—1)+1},
1eA:A] ]

Observe that when we move from A; to Ajiq, we add w(j) + 1 to A* and

remove w(j — 1) from AY.

Remark 5.1.8. Each A; corresponds to a torus fixed point in My. ¢
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We now describe a local chart of My containing the G-constellation corre-
sponding to a f-stable lacing A. Assume that 6 is generic in the Weyl chamber €(w)
for a permutation w € S..

Let A = Aj = (A%, A%) be the -stable lacing in Proposition

A? = {w(j_ 1),&)(_7)...,&)(7’— 1)}7
A; ={w0)+Lwl)+1...,w(l—1)+1}.

As is described above, A encodes which linear maps (or y, z-actions) vanish. After
changing basis, setting

Yi = 1 ifs g Ay,

=1 ifid A%
gives a local chart S; of My. Set coordinates 7;, (; to be

n = yw(jfl)a (519)

G = Ro(j—1)+1-

From the commutation relations, it follows that

Yoz1 = Y122 = ... = Yr_120 = N (j-

Note that for each ¢ # w(j — 1) either i« € AY or i + 1 ¢ A*. This means that for
each i # w(j — 1) either y; or z;41 is set to be 1. Thus

zi=m;¢ ifyi=1, ie igAY,
yi =1;G  if zipn =1, 1e. i+ 1 & A%

Therefore the affine open set S; of My is isomorphic to C? with the coordinates
UIE C]
We have commutative diagrams when 7; # 0 and (j41 # 0:

UIe; nj
Aj : (Cew(]) Kl/ (Cew(j)+1 Cew(j—l) - Cew(j—l)—i—l
G
1 nj 15 1
s o
Ajir: Cewiy — ~ Ceuggyia Cewj-1y <~ Ceyj—1)11
Git+1 Nj+1G5+1
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where the going right (resp. going left) arrows are y-actions (resp. z-actions) and
the going down arrows mean changing basis. From this diagram, one can see that

the gluing of two affine pieces S; and S;11 is given by

Si\(m;=0) — Sjx1\ (G+1=0)
(i G)  — (3G, ).

Observe that there is a divisor E; 2 P! in S; U Sj41, which is the coordinate
axis of n; = J_Jrll Note that the divisor E; is given by ¢; = 0 in S; and it is given
by nj+1 = 0in S;41. Since nj41 = 77]2(]-, the divisor Ej is a (-2)-curve.

Let S be the union of S;’s with the gluing above. As the A;’s are all possible
lacings, US; forms an affine open cover of My and hence S is isomorphic to Ma.
We saw that S contains (-2)-curves Ey,..., E,_1.

The following theorem is called the McKay correspondence (see |14/19]).

Theorem 5.1.10 (the McKay correspondence). Let G be the group of type (1, —1).

For any generic parameter 6, the moduli space My is the minimal resolution of
C?/G.
5.1.3 Universal families and intersection numbers

By [18], if 6 € €(w), then My is the fine moduli space of #-stable G-constellations.

Thus the moduli space My accompanies the universal family £ which can be de-

L= @ L; @ p;.

pi€lrr(Q)

composed as

Each direct summand L£; is a locally free sheaf of rank one. We call £; the tauto-
logical line bundle of p;.
Let L be the lattice

%(1,—1).

L=7*>+17-

For each 0 < ¢ < r, let v; denote the lattice point
L

vi = (1, i)

of L. For each 1 < j <r, define o; to be the cone

o; = Cone(vj_1,v; ).
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Let ¥ be the fan consisting of the o;’s and their faces. Note that the associated
toric variety Xy is smooth and that Xy is the minimal resolution of the quotient
variety X = C%/G.

Let F; denote the irreducible exceptional divisor corresponding to the ray
generated by v; for 1 < i < r — 1. Then the [E;]’s form a basis of the homology
group Ho (X5, Z), i.e.

Hy(Xs,Z)= @ Z[E).
1<i<r—1

It is well known that if the stability parameter 8 is in O, the first Chern classes
c1(L;) of the tautological line bundles £; form the dual basis to [E;] [10].
For a generic GIT parameter 8 € O, from GIT, it is known that

Lo = ®£f(ﬁz)
i€l

is relatively ample over the variety X = My = C?/G.

We now show this with an explicit calculation without GIT.

Let w be a permutation and €(w) the corresponding (open) Weyl chamber.
As we did in (5.1.1)), let w; be the rays of ¢(w) which form the dual basis to the

simple roots A(w), i.e.

fori=1,2,...,7r — 1, where {01};:11 is the dual basis with respect to {ai};’;}.

Proposition 5.1.11. With the notation as above, let Ly be the tautological line
bundle of pi. Define the line bundle

F = ®£Z‘H(Pk)‘
kel

foranyi=1,2,...,7 — 1. Then cl(]:i) - Ej = 64, t.e. {]—}}::_11 1s the dual basis
to {[E:]}. Therefore, the (fractional) line bundle Lqy is relatively ample over X =
Mg = C2%/G for any generic parameter 6 € €(w).

Proof. Let Aj be the jth lacing and I'; the corresponding G-iraffe. As in (5.1.9)), the

following two parameters play as the coordinates of the affine open set S; = U(T';):

N = Yw(G-1)

G = Zw(j—1)+1-
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Consider F1 = L,,0)41 ®E;(10). By the construction, the lacing Ay = (AY, A})

is

A = {w(0),w(1),...,w(r—1)},
A ={w(0) +1}.

Observe that A? does not contain w(0) for 5 > 1. Note that the line bundle F;

corresponds to the linear map

Yw(0) * Pw(0) 7 Puw(0)+1-

From the lacings, one can see that

m lfj = 1,
Yw(0) = .
1 otherwise
on each open set S;. Since the divisor E; is the coordinate axis of 7;, one can see

that

1 ifj=1,
C1 (]:1) . Ej =
0 otherwise.

Alternatively, one can show this in terms of G-iraffes. By construction of the corre-
sponding G-iraffes, F; is the line bundle defined by z"~! on the open set S; and F;
is the line bundle defined by y on the open set S; for j > 1. Since the exceptional
divisor E; 2 P! is defined by the ratio 2"/ : 4], we have the same result.

Since w1 — w; = ew(¢)+1 - ew(i)v
Fit1 ® ]:;1 = £w(i)+1 ® [":(11)
If we show that

1 ifj=it1,
(Lo ® L) Ej =14 -1 if j =4, (5.1.12)

0 otherwise,

then it follows that ¢; (]-'z) - E; = ¢;5 from induction on i.

Fix i such that 1 <i <r. Consider F; = L,,;)41 ® E;(l), which corresponds

%
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to the linear map y,, ;). Note that

niG i<,
Yu(i) = § Ni+1 ifj=i4+1,
1 j>itl,

on each open set S;. Since the divisor Ej; is the coordinate axis of 7;, from the
fact that 17;¢; = 1j4+1¢;+1 and calculations of transition functions, the claim (5.1.12])
follows. Alternatively, one can show this in terms of G-iraffes. By construction of
corresponding G-iraffes, one can see that F; is the line bundle defined by z~! on the
open set S; for j < ¢, that F; is defined by % on the open set S;, and that F; is
define by y on the open set S; for j > ¢ + 1. Since the exceptional divisor E; = P!
is defined by the ratio [2"77 : 7], we have proved the claim.

The relative ampleness of Ly follows from the fact that 0 is a strictly positive

linear combination of w;’s. O

5.1.4 Example: type 1(1,6)

This section calculates lacings for the finite group G of type %(1,6) with a fixed

Weyl chamber of Ag. These lacings give an affine cover of the moduli space of -
stable G-constellations. In addition, we present the intersection matrix between the
universal family of the moduli space and the exceptional divisors.

Let G C SLy(C) be the finite group of type %(1, —1). Its McKay quiver is

shown in Figure[5.1.1

(//\ P S PN PN PN /(\\/
L J

Figure 5.1.1: McKay quiver for G of type %(1, 6)

In Figure the number ¢ denotes the vertex corresponding to p; and the
upper (resp. lower) curved arrows correspond to y-actions (resp. z-actions).
Let w be the permutation of I := {0,1,...,5,6} given by

L0123 4506
“\o 135 2 4 6/
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Note that the corresponding set of simple roots is

A(w) = {51 — €0,E3 —€1,E5 —E3,E2 —E5,E4 —€2,E6 — 54}

= {ai, a2 + a3, a4+ a5, —a3 — ag — a5, a3 + o, 05 + a6},

and that we have a Weyl chamber €(w) corresponding to w, which forms a chamber
in the GIT stability parameter space of G-constellations.
According to Proposition [5.1.6] we have 7 lacings which give the following 7

torus invariant G-constellations:

Ay : 0 6 5 4 3 _2_ 1
1 1 1 1 1 1
e 1 R
A : 0 6 5 4. 3_ 2 1
1 1 1 1 1 1
r JERN
As : 0 6 _5_ _ 3.2 1
1 1 1 3 1
4 1 LY
Ay : 0_ 6 5. 47 T3 271
1 1 1 1
K 1 1 1\/
As 0 67 ~"5_ 47 73 27 1
1 1 1
( 1 1 1 1\/
Ag : 0 6% 75 473 T2
1 1
( 1 1 1 1 l\y

where marked linear maps are set to be 1.

Observe that the difference between A7 and A*! is: we have one more
nonzero y-arrow and we have one less nonzero z-arrow. We call this process “cutting
and adding laces”.

As is described above, these lacings give local charts. For example, consider

A4 and set two linear maps as the coordinates

n = Ys,

C = Z6-
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One can see that the point (1, () € C? corresponds to the following G-constellation:

~__ > ~_ > ~_ > ~_ > ~__ > ~__ >
'&1 n¢ 1 n¢ n¢ WCJ
n¢

where (n,¢) = (0,0) corresponds to the torus invariant G-constellation defined by
Ay.
For each Aj, there exists a unique G-iraffe I'; (see Proposition [2.6.7)):

26},

IS
o3

_ 2 .3
I‘l—{l, z, 2%, 2°,

N
N

Iy :{1, z, 22, 23, 2%, 25, y},
I's :{1, z, 22, 23, %, Y2, y},
ry={L = % L L 0% yh
Ts ={1, 2z, %, 2, 5, 42 4},
e ={1, =z, 2, v v’. v*, v},
Iz ={1, 4% o° o% o* % vy}

With the lattice L = Z* + Z- 1(1, —1), one can show that each G-iraffe T'; satisfies
U(T'j) = Spec C[S(I'j)] = D(I'j) = Uy;, where the toric cone o; C Lg is

oj = Cone (%(] - 1,r—j+1), %(]ﬂ’ —j))-

Moreover, the (-2)-curve E; is the corresponding divisor to the ray v; := %( J,r—17).
Let £; be the tautological line bundle of p;, which is a direct summand of
the universal family €, ; £;. As is stated in Section over the toric affine open
set U(I';), the line bundle £; is defined by the element of weight ¢ in T';.
We calculate the intersection number ¢i(£;) - E;. For example, consider
c1(L5) and note that

0 ifj=1,

0 ifj=2

1 ifj=3,
01(55)'EJ: L

-1 if j =4,

0 ifj=5,

1 ifj=6.
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The intersection matrix (c1(L;) - Ej); j is

),

1 00 00
010 0 0
01 0 -1 10
001 -110]
001 -1 0 1

0 00 0 01

whose inverse matrix is
1 0 0 0 0 0
01 0 0 0 0
01 -1 1 00
(5.1.13)

01 -1 1 -1 1
0 0 01 -1 1
0 0 0 0 0 1

On the other hand, by (5.1.1), the open Weyl chamber €(w) associated to

the permutation w is the cone generated by the row vectors of the following matrix:

-1 10 0 00
-1 0 1 0 00
-1 01 -1 1 00
-1 01 -1 1 -1 1
-1 00 01 -1 1
-1 00 00 01

with the basis {;}. One can see that the submatrix obtained by deleting the first
column is the same as the matrix (5.1.13)).

5.2 Chamber structures and elephants

Let G € GL3(C) be the group of type %(b, 1,—1), with b coprime to r, which is the
same group as before but taking another primitive rth root of unity. In this section,
we investigate the chamber structure of the GIT parameter space of G-constellations.
Let p; be the irreducible representation of G whose weight is i. We can
identify I := Irr(G) with Z/rZ.
Recall the McKay quiver of GG is the quiver whose vertex set is I with the 3r
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following arrows:

T;:i1— 1+ Db,

Yt — 1+ 1

zitt—1—1,
for each ¢ € I. The representation of the McKay quiver of G with commutation rela-
tions is the representation of the McKay quiver whose dimension vector is (1,...,1)

satisfying the following relations:

ZiYi+b = YiTi41,
TiZitb = ZiTi—1,

YizZi41 = 2iYi—1-

Let A C SLy(C) be of type %(1, —1) with coordinates y, z. The McKay quiver

of A is the quiver whose vertex set is I with the 2r following arrows:

Yirt—> 1+ 1,
zZitt— 11— 1,

for each ¢ € I. The representation of the McKay quiver of A with commutation rela-
tions is the representation of the McKay quiver whose dimension vector is (1,...,1)

satisfying the following relations:
YiZi+1 = ZilYi—1 for all 7 € I.
Note that the GIT parameter space © of G-constellations can be identified

Zeizo},

which is also the GIT parameter space of A-constellations. Furthermore, we have

with
@:{9:(0@')6@7’

the following proposition.

Proposition 5.2.1. Let G C GL3(C) be the finite subgroup of type %(b, 1,—1) and
A C SLa(C) the finite subgroup of type %(1,—1). Then the chamber structure of
the GIT parameter space of G-constellations is finer than, or equal to, that of A-

constellations.

Proof. 1t suffices to show that a wall of the GIT parameter space of A-constellations
is also a wall of the GIT parameter space of G-constellations.
Let 6 be a stability parameter on a wall of the GIT parameter space of A-

constellations. This means that there exists a 0-semistable A-constellation F such
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that it is not f-stable, i.e. there exists a C[y, z]-submodule G with 6(G) = 0.

Note that we have a natural identification between A-constellations and G-
constellations whose z-action is zero. Thus F can be thought of as a G-constellation
and G is a C[z,y, z]-submodule of F with 6(G) = 0. As it is easy to see that F is
f-semistable G-constellation, it proves that 6 is also on a wall of the GIT parameter

space of G-constellations. O

Note that the chamber structure of GIT parameter space of A-constellations

is the same as the Weyl chamber structure of A,_;.

Conjecture 5.2.2. The chamber structure of the GIT stability parameter space ©

of G-constellations coincides with the Weyl chamber structure of A,_1.

Let 0 be a generic element of the GIT parameter space of GG-constellations.
By Proposition 0 is generic in the GIT parameter space of A-constellations so
there exists an open Weyl chamber € such that § € €. Let w be the corresponding
element in S, as in Section [5.1

Let us consider the space of G-constellations Rep G and the space of A-

constellations Rep A. Consider the reductive group

GL(0) == ] ¢~

i€l

acting on RepG and Rep A as basis change. The moduli space My of -stable

G-constellations is
./\/lg = PrOj @ (C[REp G]Xg
n>0

Let Rep® G be the #-stable locus in Rep G and Rep® A the #-stable locus
in Rep A. We can identify Rep A with the closed subvariety of Rep G defined by
rg=---=x,_1 = 0 and Rep® A with the closed subvariety :S’vg of Rep® G defined by
rg= - =x,—1 =0.

Since §§ is a GL(d)-invariant closed set, and My is a geometric quotient, the

inclusion Sy C Rep® G induces an inclusion Sy C My

:S'; C——=Rep’ G

L

Sy —— My

where Sy is the closed subvariety of My parametrising G-constellations on which x
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acts trivially. Note that the variety Sy is isomorphic to the moduli space of #-stable

A-constellations.

Remark 5.2.3. By Proposition Sy has r torus invariant points which repre-

sent torus invariant #-stable G-constellations. ¢

Let D be the hyperplane section of C3/G defined by z = 0. Then D is
isomorphic to C2/A and has an A,_; singularity as in Section Since My is
isomorphic to C?/G by Proposition we have the following diagram

Sp =Yy My
codim.1 irr. l

DC——=C3/G =—= M,
codim.1
where the vertical morphisms are the canonical projective morphisms induced by

GIT quotients. As is known, the morphism Sy — D is the minimal resolution of D.

5.3 Irreducibility for type (1,2,2k — 1)

2k‘+1

In this section, we prove Conjecture m for the group of type Tlﬂ(l, 2,2k — 1)
with a parameter 0 in the admissible GIT chamber €, C ©. This can be proved by
finding all §-stable torus invariant G-constellations for 6 € &,.

Throughout this section, let G C GL3(C) be the finite subgroup of type
2k+1 (k+1,1,2k), which is the same type as the type of 2k+1(1,2,2k —1). Thus
r=2k+1,a=2,and set b:=k + 1.

Warning 5.3.1. Throughout this section, we consider the finite subgroup of type
2k+1 (k+1,1,2k) so that the weight of y is 1 and that the weight of z is 2k. The

results in previous sections can be easily transferred to this notation. ¢

5.3.1 (-iraffes

In this section, we present all G-iraffes using the method in Section
Consider the lattice L = Z* +Z - 1(1,2,r — 2). For each 0 < i < r, let v; be

the lattice point ;(zb, i,7 —1). Consider the toric fan ¥ of the economic resolution
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Y of X = C3/G. In the fan ¥, we have the following 2r — 1 full dimensional cones:

o; = Cone(eq, Vp—jt1,vr—;) for 1 <i<r,
(TA = Cone(vgi_l,vgi_g, ’Ugi) for 1 S ) S k,

)

O'iv = Cone(ez, v2;—2, V2;) for1 <i<k.

Proposition 5.3.2. With the notation as above, let ', T2, and Fiv be the G-iraffes

10

corresponding to the cones oy, o;, and al-v, respectively. Then the following hold:
(i) Ty ={1,2,2%,...,2%}.
1727"'7zk7i7y7"'7yi717yi
(ii) T = {yiﬂ it i1 gt J-1 (7 ifl=2041 is odd.
Zkfz‘azkfifl"'wy ) gk—iy S k—i
i TR
17'2’"'72 Zayw"ayl 7yZ . L.
(iii) T = il it hoipl shoit2 k2 (0 W L= 20 is even.
g1 0 iz yeeey R Y R
i—1 k—i—1 k—i
i A 17 Z, sty ZZ ) Y, R Yy ! ) Yy ‘
() Iy = . .
x, xz, ..., x27 wxy, ..., ayFTiol
o 1, 2, .., 2L g2 g2kl g 2k=2i42
(v) I} = i1
T, TZ, ..., TZ

Proof. For k = 1, G-iraffes are in Example [£.1.3] Using round down functions,

induction on k proves the assertion. ]

Remark 5.3.3. Note that the G-iraffes FiA and FZ-v are Nakamura G-graphs. ¢

5.3.2 The admissible chamber

In this section, we explicitly express the admissible chamber for the group G of type

ﬁ(kz +1,1,2k). We recall the identification q4.2.7D and q4.2.8D.

Let

{ef[1=0,1}, {ef|k=0,1,...,2k—2}

be the standard basis of Q% and Q%1 respectively. Assume that A" and A are
the admissible set of simple roots for type %(1, 1,1) and ﬁ(k, 1,2k — 2). Let the
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standard basis {Ei ‘ 1el } of Q?**1 be identified with the union of the two sets
{el'|1=0,1} and {e |k =0,1,...,2k — 2}

using the following identification:

ek =g withi:{r(l;ﬂ—l, forr—2<i<r,

; (5.3.4)
5? =g Withi:{%J, for0 <i<r—2.
With this identification, the admissible set A of simple roots is
_ AL _ r R
A=A U{SL%J ET_[T_Q]}UA . (5.3.5)

Remember that the the root a; = ¢; — ¢;_1 are considered as the dimension vectors

for the vertex simple at i of the McKay quiver representations.

Proposition 5.3.6. For the group of type ﬁ(k +1,1,2k), the admissible set A,

of simple roots is
Ay = {eak — €k, €k = E2k—1,E2k—1 — Ef—1, - - - Ek+1 — €1,€1 — €0}

and the corresponding permutation w is

0 1 2 3 4 oo 2k—2 2k—1 2k
= , (5.3.7)
0 1 k+1 2 k+2 ... 2k—1 k 2k
1.€.
0 if 1 =0,
w(l) = l+71 if 1 is odd,
k+ % otherwise,
forleI=1{0,1,2,...,2k—1,2k}.
Proof. Induction on k. O
Remark 5.3.8. Note that the ith ray of the admissible chamber is
i—1
(Ouiy+1 = Ouis) (5.3.9)
j=0
where {0;}/~] is the dual basis with respect to {a;}/—{. ¢
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5.3.3 Torus invariant (G-constellations

Let 6 be a generic parameter in the admissible chamber €,. Let F be a #-stable
torus invariant G-constellation. Let x;, y;, 2; denote the action of x, y, z on the vector
space Cp;, respectively.

Recall Lemma says that if F is a torus invariant G-constellation, then
there is no defined (undirected) cycle of type m with m # 1.

Remark 5.3.10. Since yz is a G-invariant monomial, any path induced by yz in
any torus invariant G-constellation F is zero. In other words, if y; is nonzero in F,

then z;11 is zero; if z; is nonzero in F, then y;_1 is zero. )

We have two cases: (1) zg = 0: (2) zg # 0.

Case x5 = 0.

Assume that zg = 0, i.e. x acts on Cpg trivially. In this case, if we prove that x; =0
for all 4, then it follows that the G-constellation F is in the list of Proposition
from the discussion in Section We now prove that we have at most r #-stable

torus invariant G-constellations.

1st case: Suppose that yp = 0. From (5.3.9), note that the first ray of the

admissible chamber is

0
Z (QW(J')H - Hw(j)) =01 — 0o,
3=0

which means that there exists a nonzero path from pg to p; in F. However, since
xo = yo = 0, the only possible nonzero path from pg to p; is induced by z2*. Thus
for each p;, we have a nonzero path from pgy to p; induced by z2*~*. From this

and Remark [2.6.3] it follows that x; = y; = 0 in F for all 4. Therefore F is the

G-constellation corresponding to I'y in the list of Proposition [5.3.2

2nd case: Suppose that yg # 0 and y; = 0. From (5.3.9), note that the

second ray of the admissible chamber is

1
(Ow(i)t1 — Ou(s)) = 01 — 0o + 02 — 01 = 03 — bo,
=0

J

which means that there exists a nonzero path p from pg to p2 in F. Suppose that the

path p is induced by a monomial m = z%y?27. From zy = 0, it follows that a = 0.
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By Remark [5.3.10] one can see that either 5 or « is zero. In fact, if v = 0, then the
path p is induced by y? so p = yoy1 is nonzero, which contradicts the assumption

2k—1

y1 = 0. Thus p is induced by z . One can show that F is the G-constellation

corresponding to I'y in the list of Proposition [5.3.2

(I + 1)th case: Suppose that Y, (o), Yu(1), - - - Yw—1) 7 0 and y,q) = 0 for
2 <1<2k—2. From xg = 0 and yg # 0, we have x1 = 0 because ypx1 = xoyrr1 = 0.
From (j5.3.9), note that the (I + 1)th ray of the admissible chamber is

l
(Gw(j)ﬂ - Qw(j)) = 9w(l)+1 + 9w(l—1)+1 — Ory1 — bo-
7=0

We have two cases: (A) [ is odd: (B) [ is even:

Case (A) 3 <[ is odd. In this case, w(l) = &} and w(l — 1) = k + 5.
Thus we have yi11 = 0 and yxy1 # 080 212 = 0. The (I41)th ray of the admissible
2
chamber is

91+l%l +_9k+l%l _'6k+1 — 0.

This means that there are two nonzero paths p, q such that either (1) one is from
po to Prylst and the other one is from pyy1 to Prylgts OF (2) one is from pgiq to
Pley 11 and the other one is from pg to p; IS One can show that (2) cannot happen
as follows: suppose p is the nonzero path from pg to p, i1, which is induced by a
monomial 2%y®2Y with a = 0 due to 2o = 0; if p is induced by 3?, then it contradicts
the assumption that yir1 = 0; if p is induced by 27, then it contradicts the fact that
Zk+2 = 0 since HTI < k:.2 Let p be the nonzero path from pg to pk+l+T1. Since g =0

and yi11 = 0, we know that p is induced by z7. One can see that
2
y=2k+1-(k+4) =k+1- 4L

Let q be the nonzero path from pgi1 to p, L, which is induced by a monomial
2
x®yB27. Firstly, since 101 = 0, we have f = 0; otherwise, from the following
2

diagram
zayﬁ—lzw

I+1 Y I+1

it contradicts the assumption that q is nonzero. Secondly, since x; = 0, we have
a < 1. If @ =1, then it follows that v = 0 from the fact that z; = 0 so any path
induced by xz from pgyq is zero. Therefore we get that the path q is induced by
27. One can check that if any z; # 0, then there exists a defined (undirected) cycle

85



of type m with m # 1. Thus x; = 0 for all 7, and therefore F is the G-constellation
corresponding to I';41 in the list of Proposition [5.3.2}

Case (B) 2 <1< 2k-2iseven. Inthiscase,w(l) =k+%andw((—1)= L.
Thus we have y, 1 = 0 and yx41 # 050 zg+2 = 0. The (I41)th ray of the admissible
2
chamber is

9k+1+g + 61+% = O+1 = o

This means that there are two nonzero paths p, q such that either (i) one is from
po to Pri1vl and the other one is from pgy1 to Pryls O (ii) one is from pgi1 to
Pri1yl and the other one is from pg to Pryl- One can show that (ii) cannot happen
as follows: suppose p is the nonzero path from py11 to p,_ Ly which is induced by
a monomial z%y%27 with o < 1 due to z1 = 0; if & = 1, then « = 0 because z; = 0
so the path induced by zz from pj; is zero; if p is induced by y? or xy?, then it
contradicts the assumption that y, L= 0; if p is induced by 27, then it contradicts
the fact that z; = 0. Let p be the nonzero path from pgy to Priist- We know that

p is induced by 27 as z9 = 0 and y, 1 = 0. One can see that
2
vy=2k+1-(k+1+5) =k-1L

Let q be the nonzero path from pyi1 to p; +1s which is induced by a monomial
x%yP27. Firstly, note that o < 1 because x; = 0. For a contradiction, suppose that
a = 1. Then we have v = 0 since z; = 0 so that any path induced by zz from py11
is zero. Note that f < % because y; L= 0. Thus zy® cannot induce a nonzero path
from pgy1 to Prit Therefore, &« = 0 and we can see that the path q is induced by
27 with v = k — % One can check that if any x; # 0, then there exists a defined
(undirected) cycle of type m with m # 1. Thus x; = 0 for all ¢, and therefore F is
the G-constellation corresponding to ;11 in the list of Proposition [5.3.2

2kth case: Suppose that Y, (o), Yu(1)s -« Yoek—2) # 0 and yy,or—1) = 0.
Note that 2kth ray of the admissible chamber is

2k—1

Y (utyer = Ouisy) = O21 — o,
=0

which means that there exists a nonzero path p from pg to por in F. Since xg =0
and y,(2x—1) = 0, the path p is induced by the monomial z. One can see that F is
the G-constellation corresponding to I'gx in the list of Proposition
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(2k + 1)th case: Suppose that y.(0), Yw(1),- - > Yw(2k) 7 0. Then F is the
G-constellation corresponding to I'oz41 in the list of Proposition [5.3.2]

Case xg # 0.

Since F is generated by po and pgi1, if xg # 0, then F is generated by pp. Assume
that ¢ # 0. Then F is a torus invariant G-cluster, i.e. F is given by a monomial ideal
I. The monomials which are not in I form a Nakamura G-graph. In Appendix [C]
we find all Nakamura G-graphs I" under the assumption g # 0, i.e z € I'; this also
completes the irreducibility of the moduli space My.

Since F is generated by pg, for each p;, there exists a nonzero path from pg
to p;. Moreover, we have three simple observations: (i) the path y**! from py to
Pr+1 18 zero; otherwise there is a nonzero defined cycle of type yk% around pg as

the following diagram:
z k+1
PO——Plr1=<——p0 :
22 is a G-invariant monomial: (iii)
z?
y

(ii) any path induced by x?z is zero because x
if yg # 0, then z41 is zero; otherwise there is a nonzero defined cycle of type

around pg as the following diagram:

x x Yy
PO Pk+1 P1 £0-

1st case: Suppose that zg = 0. Note that there exist nonzero paths p from

po to poi, and q from pg to pr. We have two possible cases: (A) yo = 0: (B) yo # 0:

Case (A) yo = 0. Since y9 = 29 = 0, the path q is induced by z%*.
Therefore one can see that F is the G-constellation corresponding to FY in the list

of Proposition [5.3.2

Case (B) yo # 0. Observe that zy1; = 0. Assume that the path p is
induced by z*y®z7. Since zp = 0 and ZTr+1 = 0, one can see that a < 1, v = 0,
and § < k. From considering the weight of monomials, it follows that the only one
possible solution is zy*~!. In a similar way, the only one possible solution for q is

y*. One can see that F is the G-constellation corresponding to I IA in the list of

Proposition [5.3.2}

2nd case: Suppose that zp # 0 and zp, = 0. Thus the path induced by 22
from pg is zero. We have two possible cases: (A) yop = 0: (B) yo # 0:
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Case (A) yo = 0. Note that there exists a nonzero path q from pg to py.
Assume that the nonzero path q is induced by z%y®z7. Note that 8 = 0 because

yo = 0. From the fact that any path induced by z? or 22

z is zero, it follows that v < 1
and that the only one possible solution is 2*~!. Therefore F is the G-constellation

corresponding to FQV in the list of Proposition m

Case (B) yo # 0. Observe that xx1 = 0 and that there exists a nonzero
path p from pg to pop_1. Assume that the path p is induced by z®y?2z7. Since
o < 1 and v < 1, the only solution is 2y*~2. Note that the (2k — 1)th ray of the

admissible chamber is
9k+1+2k772 + 91+%sz — Opy1 — 6o = O + 0 — Oq1 — 0o,

which means that there is a nonzero path from px41 to pr or pox. One can show
that there are no nonzero paths from py1q to por as follows: otherwise, since we
have a nonzero path induced by z from pg to psi, we have a nonzero defined cycle

around pg as the following diagram:

nonzero z

0 = Pk+1 P2k 00-

Thus we have a nonzero path q induced by 2 y% 27" from Pk+1 to pi. Since 241 =0
and 3 < k, it follows that o/ = 0 so the only possible solution is z. For a nonzero
path from pg to py_1, one can see that the path is induced by y*~!. Therefore F is
the G-constellation corresponding to FQA in the list of Proposition

(I + 1)th case: Suppose that zg, 2ok, ..., 22p+2-1 # 0 and 29,11y = 0 for
2 <1<k —1. Note that the (2k + 1 — 2{)th ray of the admissible chamber is

Op i1y 22 + 0 2oz = Op1 — b0 = a1 + Okt — Oktr — o,

which means that there is a nonzero path from pgy1 to pri1-; or pori1-;. One can
show that there are no nonzero paths from pgy1 to pagy1—; as follows: since we have
a nonzero path induced by z! from py to popy1_i, if so, we have a nonzero defined
cycle around pg as the following diagram:

X nonzero Zl
Po Pk+1 Pk+1—1<~—p0-

Let q be a nonzero path from pgi1 to pri1—; induced by xa/yﬁ/z'yl. It follows that
the only possible solution is z! from the fact that 2z is G-invariant and that 5’ < k.
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Let p be a nonzero path from pg to par_; induced by x%y?27. We have two possible
cases: (A) yo=0: (B) yo # 0:

Case (A) yo = 0. Since yo = 0, we have 8 = 0 and hence the only possible
solution is 2%*72! by the fact that 22z is G-invariant. One can see that F is the
G-constellation corresponding to Flzl in the list of Proposition m

Case (B) yo # 0. Note that in this case z341 = 0 so a < 1. Since v < [,
the only solution is zy* 1. For a nonzero path from py to py_;, one can see that
the path is induced by y*~*.

Fﬁl in the list of Proposition m

Therefore F is the G-constellation corresponding to

Throughout this section, we have proved the following theorem.

Theorem 5.3.11. Let G C GL3(C) be the group of type Tlﬂ(k +1,1,2k) and 6
a generic parameter in the admissible chamber €,. Then we have at most 2k + 1
torus invariant G-constellations. Therefore, the moduli space My of 0-stable G-

constellations is irreducible and isomorphic to the economic resolution of X = C*/G.

Proof. By Section [5.3.1] we already know that there exist 2k 4+ 1 6-stable G-iraffes.
Thus we have at least 2k+1 torus invariant G-constellations lying over the birational
component. From Remark [4.1.9] it follows that Yy = My. O

5.4 Irreducibility for type (1,7,5)

In this section, we show that for the group of type 1—12(1, 7,5) ~ %(7, 1,11), the mod-
uli space My is irreducible by finding all #-stable torus invariant G-constellations for
GIT parameter 6 € €,. As is in the previous section, we use %(b, 1,7 — 1) notation.

Let G C GL3(C) be the finite subgroup of type £5(7,1,11). One can see that

G-invariants monomials are generated by

12 5 3,3 5,12 7 2.2 7 12
r ,ryYy,xry,ry,y ,r z,r z,rz ,2 .

Table presents the monomials of weight 1.
The list of G-iraffes is in Table In this section, we prove that 6-stable
torus invariant G-constellations are all induced by G-iraffes.

We recall the admissible Weyl chamber for the group of type %(7, 1,11) (see
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Weight Monomials

'y, 2z, 128, M

a:2,y2,a:z5, 210

2 3 4 4.9
y LY, Y, X2, T2, 2

4.2, 2 4 3 .8
r,Try-,y ,rz", 2

11 .4 2,3 ,5 ,.6 27
r,xrY,rYy Yy ,re,Tr, 2

6 4,2 2,4 ,6 6
r-,x Yy, Y,y ,rz,z
5

8 8 .3 4
r,xY,y ,r 2,z

3 2 .9 .3
:C?xy7y7z
0 .3 3,10 .5
LY, LYy LY L7z, 2
5.3,2 4 11
x?‘:l:.y?xy?y 7Z

—

9

7
Y,z

OO0 || T =W N

2

—
o

—
—_

Table 5.4.1: Monomials of weight i for G = £(7,1,11)
Section [4.5.2). The admissible set of simple roots is

A, =
€1 — €9, €9 — &4, €8 — &7, E7 — &2, €2 — &)

{511 — €6, €6 — €105 €10 — €5, €5 — &8, €8 — €3, €3 — 51,}
)
and the corresponding permutation w is

(012345678 9 10 11
\0 2749138510 6 11/

From this, the rays of the admissible chamber €, are the row vectors of the following

matrix:
-1 1 00 000 00 0 00
-1 1 -1 1 0 0 0 00 0 00
-1 1 -1 1 000 -1 1 0 00
-1 -1 1 -1 1 0 -1 1 0 0 0
-11 -11 -110 -11 -110
-1 0 o1 -110 -11 —-110 (5.4.1)
-1 0 00 010 -11 -110
-1 0 0 0 01 0 -1 0 01 0
-1 0 00 001 -1 0 010
-1 0 00 001 -1 0 0 0 1
-1 0 00 0 00 00 0 0 1

Let F be a -stable torus invariant G-constellation. Recall that for a genuine

monomial m, m;) denotes the linear map corresponding to the path from p; induced
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by m.
We have two cases: (I) zg = 0: (II) z¢ # 0.

Case (I) zo =0.

Let [ be the smallest integer such that the linear map y,,;) is zero. For each [, the
torus invariant G-constellation F corresponds to the G-iraffe of ;11 in Table

As an example, we consider the case where [ = 0,3,7,11. For the other cases,
one can show the assertion by considering (I 4+ 1)th row vector of the matrix (5.4.1)

in a similar manner.

Case [ = 0. This means that yp = 0. Since the first row of the matrix is 8, — 6y,
there exists a nonzero path from pg to p1; otherwise, the submodule of F generated
by pg is negative with respect to the first row. From the assumption that o = yg =
0, the path is induced by z'! because the z,y-actions at py are zero. One can see
that F is given by the G-iraffe corresponding to oy in Table

Case | = 3. This means that yg, y2,y7 # 0 and that y4 = 0. Since the fourth row

of the matrix (5.4.1)) is
Os + 05+ 03+ 01 — 07 — 04 — O — Oy,

there exists a nonzero path p from p4 to one of p1, p3, p5 or pg; otherwise, F has
a submodule which is negative with respect to the vector above. Firstly, note that
x1 = 0 by yor1 = xoyy and that z; = z3 = 0, by yo,y2 # 0; otherwise, F has a
nonzero cycle around ps induced by yz. From this, it follows that any paths from
p4 induced by y, x4, 232, 22 are zero: indeed, one can see that an arrow of each path
is zero;

Y4 = T4T11T6T1 = T4T11T621 = 2423 = 0.

From Table the nonzero path p is induced by z3 or z.

For a contradiction, suppose that z4 = 0. Then p is induced by z3, so z42112¢
is nonzero. Thus zg is zero; otherwise, it contradicts that zgx11 = zgz7 = 0. Then
nonzero paths from pg to ps or pg cannot exist. Thus there exists a nonzero path
from p2 to ps or pg. By considering all possible monomials of suitable weights, it
contradicts the fact that any paths from ps induced by 2%, 2%y, y3, 22, 2% are zero.

Considering the row vector above, we know that there exists a nonzero path

from po to pi, which is induced by z° or z. For a contradiction, suppose that the
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path is induced by 2°. Since zozgx421126 is nonzero, it follows that xezezy = 202128

is nonzero, which contradicts that 21 = 0. Thus 2, is nonzero and 2° is zero.
Consider the vertex py. We have a nonzero path q from p7 to ps because

there are no nonzero paths from pg to ps. Note that any paths from p7; induced

7

by 23y, ', 25, 27 are zero. Moreover, paths induced by 22z are zero; otherwise, we

have the following nontrivial undirected cycle around p7:

Y frsd
PT——>pP8=<~——p7-
Thus q is induced by 22.
Lastly, one can see that we have a nonzero path from pg to pg induced by z*.
Therefore, F is given by the G-iraffe corresponding to o4 in Table

Case [ = 7. Thus we have that yo, y2, y7, Y4, Y9, y1,y3 7 0 and that yg = 0. Then

xg =21 = x9 = x3 = x4 = 0. Consider the eighth row vector of the matrix ([5.4.1)):
B0+ 05 — 07 — 0.

Then there exists a nonzero path p from p7 to one of p5 or pi1g. As any paths from

3

p7 induced by 2,32, 2% are zero, one can see that p is induced by z2. Moreover, we

have the nonzero path induced by z? from pg to p1g9. Therefore, F is given by the
G-iraffe corresponding to og in Table

Case [ = 11. As by the assumption we have that y'! induces a nonzero path from
po to p11, F is given by the G-iraffe corresponding to o12 in Table

Case (II) zy # 0.

As xg # 0, the paths induced by 37, 2° from pg to p7 are zero. Considering the first
and the last row vectors of the matrix , we know that there exist a nonzero
path from pg to p; and a nonzero path from pg to p11. The former can be induced
by 27,1y, 2%z and the latter can be induced by 2°, 23y?, 2y*, 2. We have the following

five cases:
(1) zp # 0 and z7 = 0.
(2) xg,z7 # 0 and x5 = 0.
(3) xo,x7,22 # 0 and xg = 0.

(4) X0, X7, T2, L6 # 0 and T = 0.
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(5) X0, L7, T2, T6, L1 7é O

Case (1) zy # 0 and z7 = 0.

Since the path 37%0) induced by 2 from pg is xox7, it is zero. As we have a nonzero
path pg to p1, yo is nonzero.
We have the following five cases (1-A)-(1-E):

(1-A) y2 = 0.

(1-B) y2 # 0 and y4 = 0.

(1-C) y2,y4 # 0 and y3 = 0.
(1-D) y2,v4,y3 # 0 and y5 = 0.

(1-E) v2,y4,y3,ys5 # 0 and y = 0.

All of (1-A),(1-B),(1-C),(1-D),and (1-E) give G-constellations corresponding to the
G-iraffes corresponding to ™, 73, 74, 77, and Tg, respectively.

As examples, we investigate Case (1-B) and Case (1-D).

Case (1-B) y2 # 0 and y4 = 0. By the assumption, we have that any paths
from pg induced by 22,4°, 2% are zero. Note that any paths from pg induced by
xy* are zero; otherwise, the submodule generated by p4 is supported on p4, p1o as
Y4, 24, Y10, 210, T10 are zero, so it is negative with respect to the fourth row of the
matrix . Considering the eleventh row vector, we know that 2y is nonzero.
Furthermore, as 6(p4) is negative, the path induced by y* from pq is zero.
Considering the eighth row vector 05 + 019 — 07 — 0y, we have a nonzero path

from py to p1g or ps. The monomials that can induce a path from p7 to pig are
$97 $2y7 y37 x4z7 x’z47 297

which induce zero paths at p7. The only possible solutions are the nonzero paths
from p7 induced by 22,43, If z(27) is zero, then we have a nonzero path from pg to

p5. This implies that wz?o) is nonzero, which contradicts to that z(27) is zero. Thus

z(27) is nonzero, and z7, zg, 211 are nonzero. From this, we know that the path :L’y?o)
is zero because xy? is of the same weight as 22, which induces nonzero path from
P0-

Consider the third row vector 61 + 03 4+ 0g — 07 — 05 — 6. Suppose that y7 is

zero. Then it follows that x1 is zero and that there exist no nonzero paths from pg or
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p7 to ps. Thus the nonzero path induced by z* from pr is nonzero. As x7 is zero, 3
is zero. Moreover, we have a nonzero path from ps to pg, which can be induced by
6 6

28, xy?, 2?y*, y8, 2, 26. Note that paths induced by 29, x%y?, 2%y*, ¢, 22, 25 from

P2 are zero because:

ToTYT4TI1TEL1 = YoX3 = Y2Uy3ys = 2221 = 2221 = 0,

which is a contradiction. Thus y7 is nonzero. Furthermore, as 6(pg) is negative, the
path :):y(QO) is zero because x2y(20) and xyf’o) are zero. In addition, from the fact that
0(p4),0(py) are negative, it follows that Z?o) is zero.

Note that z4 is nonzero; otherwise, there are no nonzero arrows from p4 so
the vertex simple Cpy is a submodule of F with 6(ps) < 0. As 24,219 are nonzero
and xg,ys are zero, we have g, yg are zero, and hence zg # 0 because 6(pg) < 0.

Similarly, as yg is zero, from that

Y23 = XT2Y9, 24T3 = T4Z211,

we have x3 = x4 = 0. We know that 25 or xo is nonzero, by considering the fourth
row vector 01 + 03 + 05 + 0s — 07 — 04 — 05 — 0y. As zg, x1 are nonzero, it follows that
both z9, 9 are nonzero from the fact that xoz9 = z0x7.

One can see that F corresponds to the G-iraffe of 73 in Table

Case (1-D) y2,y4,y3 # 0 and y5 = 0. As z9 # 0,y5 = 0,27 = 0, the paths
m?o), y?o), z?o) from pg are zero. Considering the tenth row vector 0g + 611 — 67 — 0y of
the matrix , we know that there exists a nonzero path from one of pg or p7 to
pe- In both cases, F contains a nonzero path from one of pg to pg as xg is nonzero.
The monomials which can induce the nonzero path are 25, 2442, 22y*, 4%, 22, 25. Note
that only zz can induce a nonzero path as the paths :U%O),y?o),z?o) are zero. In
addition, one can see that xg is zero; otherwise, xgxr72z7 = xgz7T¢ is nonzero, which
contradicts x7 = 0.

Consider the sixth row vector of the matrix (5.4.1)):
O3 4+ 05 + 0g + 019 — 09 — 07 — 04 — Oy.

Thus F has a nonzero path coming to ps from one of pg, p4, p7, p9. Considering
all possible monomials at each vertex, one can see that we have only one possible
nonzero path induced by 3 from po; for example, 2°, 23y%, zy*, y'!, z can induce a

path from p4 to p3; the paths from p4 induced by 2,42, z are zero because g, ys, 24
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are zero. From the fact that ys,ys are nonzero, it follows that the path y(50) is
nonzero.
We now show y?ﬂ is nonzero. Note that there are no nonzero paths p7 to ps;

otherwise, we have the following nonzero cycle:

x nonzero Yy

Po P Ps Po-

Consider the eighth row vector of the matrix (5.4.1)):
B0 + 05 — 07 — 0.

Thus F contains a nonzero path from p; to p1p. The monomials which can induce

the path are the monomials of weight 3:

29 2y, 3, atz, w2t 20
Note that as x22 is of the same weight as v°, the fact that y(50) is nonzero implies
that xz(QO) is zero. Thus the nonzero path from p7 to pig is induced by y3. One can

see that F is the torus invariant G-constellation associated with the G-iraffe of 7

in Table [4.5.1]

Case (2) xg,z7 # 0 and xo = 0.

We have the following two cases: (2-A) yo = 0: (2-B) yo # 0. These cases (2-A) and
(2-B) give G-constellations corresponding to 71 and 75 in Table respectively.
Here we show that there is a G-iraffe giving F for Case (2-B).

Case (2-B) yo # 0. As 22 = xoz7 is nonzero, y; = 0. One can see that the
monomials 23, y?, x%2, 2° induce zero paths from py and that there are no nonzero
paths from py to p1: otherwise we have a nonzero cycle. Firstly, zg is nonzero by the
eleventh row vector of the matrix . Secondly, considering the 3rd row vector

91+9+98—97—02—90

of the matrix , we can see that there exists a nonzero path from ps to one of
P1, p3,ps. One can show that any paths from py induced by monomials of weight 6
are zero because ro = 29 = yoy3 = 0. Thus we have a nonzero path from po to ps.
The monomial y only can induce a nonzero path from ps to p3. From this, we have

that x1,y7, s, y2 are nonzero and that x3 is zero, so the paths Zzlo) and :L‘zzlo) are
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zero. From this, by the negativeness of 6(p4) and 6(pg), we can see that the paths
Z:(30) and a:z?o) are zero. Indeed, if $Z:(30) is nonzero, then we can see that Cp, is a
submodule of F. By a similar reason, we can see that the paths Z?o) is zero.

Consider the eighth row vector of the matrix ([5.4.1)):
010 + 05 — 07 — 6.

There exists a nonzero path going to ps from one of pg, p7. In both cases, we have
a nonzero path from pg to p7 as zp is a nonzero arrow from pg to p7. Among the
monomials of weight 5, the monomial 222 only can induce a nonzero path from py.
In particular, z11,x19 are nonzero.

As z42z11 = z4x3 = 0, we have that z4 = 0. Since 0(pg) is negative, at
least one of xg,yg, 29 is nonzero, which implies that zg is nonzero; if xg = 0, then
Y9 = 29 = 0 because xg9z4 = zg9xg and T9ys = Y9T1o.

Let us consider the fifth row vector
014+ 603 +605+0g+01g—06g— 07 —04— 03— 0.

As there exist no nonzero paths from ps to any of p1, ps, ps, p10, there exists a nonzero
path p from p4 to one of p1, ps, ps, p1o- Note that 2(24),31(24) are zero as z3 = 0 and

ys = 0, respectively. The following monomials can induce p:
3,.2.9 3 7 2 6 11 4 .22 4 .3 8 6 4.2 24 6 6
$7$y ?y’Z’$ ’y7$ Z7xz7z 7x 7:’Uy’y 7xz7z’x 7xy7xy)ya$27'z'

The monomial y only can induce the nonzero path p, so y4 is nonzero. From the
fact that x9ys = Y919, it follows that yg is nonzero. In addition, if z4 is nonzero,
then we have the following nonzero cycle:

z xy 22 Y

P4 P3 p7 P5 P4-

Case (3) xg, 27,22 # 0 and zg = 0.

We have the following two cases: (3-A) yo = 0: (3-B) yo # 0. In these cases, in a
similar way to Case (2), it can be proved that (3-A) and (3-B) give G-constellations
corresponding to 74 and 7g in Table respectively.

Case (4.) Xy, Ty, T, Tg 7é 0 and x1 = 0.

In a similar manner to Case (2), we can show that this case corresponds to the cone

T10 in Table
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Case (5) Xo, Ty, T, Te, L1 7& 0.

In a similar way as above, one can show that this case corresponds to the cone 7y

in Table [4.5.11

Conclusion.

We have seen that for the finite group G of type 1—12(7, 1,11) and a parameter 6
in the admissible chamber €, there exist exactly 23 6#-stable torus invariant G-
constellations. By Remark we have shown that My is irreducible, so My

is isomorphic to the economic resolution of C3/G.
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Appendix A

M, is irreducible for
G = %(l,a,r — a)

Let G be the finite subgroup of GL3(C) of type %(1, a,r —a) and X the quotient
space C3/G. Consider the moduli space My of 0-semistable G-constellations for

0=(0,...,0). By definition,
My = Spec C[Rep G]5L)

parametrises 0-semistable G-constellations up to S-equivalence. Note that every
G-constellation is 0-semistable.
Recall that m;) denotes the linear map induced by the action of a genuine

monomial m € Hzo on the vector space Cp;.

Proposition A.0.1. Let F be a G-constellation for the finite group G of type
1(1,a,7 — a). We have the following:

(i) F is 0-stable if and only if it is isomorphic to Oy for a free G-orbit Z in C3.

(it) if F is not O-stable, then F is S-equivalent to B, 00 ® p, where Oy is the
skyscraper sheaf at the origin (0,0,0). Therefore all strictly 0-semistable G-

constellations collapse to a point in the moduli space.
Moreover, the moduli space My is isomorphic to X = C3/G.

Proof. If F is 0-stable, then F has no nonzero proper submodules, which means
that F is simple. Let e, be a basis of Cp. Then the submodule generated by e, is

equal to F. This means that there exists a nonzero path from p to p’ for any other
/

0.
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From this, if F is O-stable, it follows that there exists a nonzero cycle passing
through every vertex. Then F is supported on a free G-orbit Z in C3, and hence F
is isomorphic to Oz by Lemma This proves (i).

For (ii), assume that F is not O-stable so there are no nonzero cycles passing
through all vertices; otherwise, there are no nonzero proper submodules, which
implies that F is 0-stable. Firstly, note that F should be supported on the origin
as GG acts freely outside of the origin.

We claim that there are no nonzero cycles; suppose that there is a nonzero
cycle around pg and write the nontrivial monomial m = z™1¢4™22™3 corresponding
to the cycle, so that m g is nonzero. Assume that m; > 1 so that the cycle must

pass through the vertex p; = wt(z). Since

mg) = Zo - (%)(1)

by the commutation relations, the linear map (%) () induced by the monomial Z*

at pp is nonzero. Thus the linear map induced by m at p;

m

= (2),

is nonzero. Thus we know that there exists a nonzero path from pg to p; and that
m,q is nonzero. Since 1 is coprime to r, we can get a nonzero cycle induced by
" which is nonzero. For the other cases, e.g. mo > 1, we can find a nonzero cycle
similarly.

Since F contains no nonzero cycles, there exists a vertex p such that the
linear map induced by any nontrivial path to pj is zero. Write F1 = @, V;, which
is a submodule of F. Then F/Fj is a vertex simple and is isomorphic to Oy ® p.
Since JF7 does not have nonzero cycles, we can deduce that F is S-equivalent to
b, 0o ® p.

To prove (iii), firstly note that from the classical invariant theory, the set of

cycles induced by genuine monomials
{m(z) } m c Mzg,i S I}

generates the coordinate ring C[Rep G]S™®) of M.
We define an algebra homomorphism ¢ from C[Rep G]¢“() to Clz,y, 2] by

1 : C[Rep G]GL(J) — C[:E,y,z]c, mg) — m.
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The algebra homomorphism 1 is clearly surjective. To prove the injectivity, it
suffices to show that mg; = m(y in C[Rep G]GL(‘S) for all i € I if m € Mxo.
Assume that m = (my, mg2, m3) € M > with m; > 1. Then the cycle must pass the

vertex p; = wt(x). Since

mg) = o - (%)m = (%)(1) "o = My,

it is proved that m;) = m) for all 7 € I by the fact that 1 is coprime to r. For
the other cases (e.g. m2 > 1), we can prove the assertion similarly as a is coprime
to 7. O

Remark A.0.2. In the proof of the proposition above, we also proved that the
quotient variety C3/G can be embedded into M as a closed subvariety for any finite

abelian subgroup G C GL3(C), because there exists an algebra homomorphism
C[Rep G]M®) = Clz, y, 2],

which is surjective. ¢
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Appendix B

Example: G-graphs which are

not G-iraffes

In [25] Nakamura assumed that U(I') has a torus fixed point for any Nakamura
G-graph T i.e. every G-graph in his sense is a G-iraffe. His assumption implies
that every torus invariant G-cluster lies over the birational component of G-Hilb.
However, Craw, Maclagan and Thomas [5] showed that there exists a torus invariant

G-cluster which is not over the birational component.

Example B.0.1 (Craw, Maclagan and Thomas [5]). Let G C GL3(C) be the group
of type 1—14(1, 9,11). Note that G is isomorphic to %(1, 2,4) x %(1, 1,1). Consider the
monomial ideal

2 2 .2 2 2 .2, .4 4 4
I:<y Z?'CL'Z 7'1"y ?:I" y7yz 7x Z?x 7y ’Z>

and the corresponding Nakamura G-graph
F = {17 z’ $27 x37 y7 y27 y37 z’ 22’ Z3’ xy? xz’ yz? ZL'yZ}.

Craw, Maclagan and Thomas [5] showed that this ideal does not lie over the bira-
tional component using Grobner basis techniques.

We show this by proving the G-graph I' is not a G-iraffe. One can calculate
the semigroup S(I') and notice that S(T') is generated as a subsemigroup in M by

2 2 2 2
TY° Yz< x°z Yz
= = Ny el Note that

ry? y2? 2’z

23 3 '?:1

and hence %2 € S(I') N (S(T))~! # {1}. Thus U(T) does not have a torus fixed
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point. Indeed, the cone o(I') is the cone generated by -;(7,7,7) so it is not a full
dimensional cone. Therefore the G-cluster C(I') = C[x,y, z]/I does not lie over the

birational component. ¢

Remark B.0.2. Craw, Maclagan, and Thomas [5] provided an equivalent condition
using Grobner basis for a monomial ideal to be over the birational component. In
the terms of G-iraffes, the condition is equivalent for a Nakamura G-graph to be a
G-iraffe. ¢

Example B.0.3 (Reid). Let G C SL4(C) be the group of type =(1,6,10,13) with

coordinates x,y, z,t. Consider the monomial ideal

j xﬁ, x3y, :n3t, xzz, x2t2, xyz, xyt, x2t, xt3,
Yoyttt P et y2? yt?, 2, 22 22t
and the corresponding Nakamura G-graph
17 :1:7 ‘/1:27 "L‘37 "'U4) ','175’ y? y27 y37 y47 Z) 22?
=<t t3, xy, 2%y, vz, £22, at, 2%, xt?,

yz, v’z 3z, yt, P, 2t ayz, yat

Note that yigt, %, f;f are in the semigroup S(T') and

yzzt :C3y T
e

8
ot
~

Thus ngt € S(I) N (S(T))~! # {1}. Thus U(T') does not have a torus fixed point.
Therefore the G-cluster C(I') = Clz, y, z,t]/I does not lie over the birational com-
ponent. ¢

Remark B.0.4. Reid used the ideal in Example to provide a case where
G-Hilb has a 5-dimensional component even if G is a subgroup of GL4(C). ¢
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Appendix C

Nakamura G-graphs for type

sk + 1,1, 2k)

Let G € GL3(C) be the group of type Tlﬂ(k +1,1,2k) and € a generic parameter
in the admissible chamber €, (see Section [5.3.2)).
If 9 # 0, then any 6-stable G-constellation is generated by pg, so it is a

G-cluster. Thus we have a 1-to-1 correspondence between the set
{6-stable torus invariant G-constellations with z¢ # 0}

and the set
{Nakamura G-graphs I' containing x}.

In this section, we classify all Nakamura G-graphs containing x. By doing that, we
prove that the number of #-stable torus invariant G-constellations with z¢ # 0 is
2k.

Lemma C.0.1. Let G C GL3(C) be the group of type ﬁ(k + 1,1,2k) and 0
a generic parameter in the admissible chamber €,. Assume that I' is a G-graph

containing x. Then I' has the following properties:
(i) y*+1, 2k ¢ T.
(ii) yz, 2%z € T.
(iii) x> ¢ T, ify € T.
Furthermore, if T is 6-stable, then z* € T for 1 <1 < k implies that zz' € T.

Proof. The assertion (i)-(iii) are straightforward from the definition of G-graphs.
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Suppose that T is f-stable and that T' contains 2! for 1 <1 < k. Note that
by Section the (2k 4+ 1 — 2l)th ray of the admissible chamber is

Ook4+1—1 + Op41—1 — Oky1 — 0o,

which implies that there is a nonzero path from pg11 to pg+1-; Or por+1—;. Remember
that the existence of a nonzero path from p; to p; is equivalent to the condition that
m,, divides m,, where m,,, m, are the corresponding monomials in I'. Since 2
is of weight 2k + 1 — I, 2! is the monomial of weight 2k +1 — [ in I" and z is the
monomial of weight k£ + 1 in I', there are no nonzero paths from pg+1 to pogy1—i.
Thus there exists a nonzero path from pgx11 to pgy1—;-

Assume m = z%y”27 is a unique monomial of weight k + 1 — [ in I". Since
x divides m, we get a > 1. Note that y**! & T' from Lemma implies 8 < k.
Since 2 19%27 is a genuine monomial of weight 2k + 1 — [, it follows that m = x2!.
Therefore, m = 2! is in T. O

Proposition C.0.2. Let G be the group of type Tlﬂ(k +1,1,2k) and 0 a generic
parameter in the admissible chamber €,. Assume that I' is a 0-stable G-graph con-
taining x. Then I is equal to either FZA or I‘lv in the list of Proposition for

some 1 <[ <k.

Proof. Let I be a #-stable G-graph containing x. From Lemma there exists [
with 1 <1 < k such that 1,z,2%,...,2"1 € T and 2! ¢ T'. The G-graph T contains
the monomials x, xz, x2%,..., 22" and z2! ¢ T by Lemma

We have two cases: (A)yeI: (B)y &I

Case (A) y €. Since I has 2k + 1 monomials and 2?2 ¢ T, T'is I')/, i.e.

1 T 2 g3 p2k—2l 262041 .2k-2142
z Tz
F:
P e e

Case (B) y ¢ I'. Since 22 has the same weight as y, we have z? ¢ T.
Consider a unique monomial m = z®y?27 in T of weight 2k — [ + 1. From the fact
that o < 1 and v < [, one can show that & = 1 and v = 0. The monomial z®y?27

is of weight k& — [ and it is in I", so one can see that m = xy*~!. Furthermore, one
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can show that I' contains y*~+1. Thus T is FZA, ie.

k—1+1
y +
k—1 k—1
Y Ty
T
r— Y Y
1 T
z Tz
A1 -1

Therefore the assertion is proved.
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